Calculus of Variations - Problem Sheet 2

Trinity Term 2019

1. It is required to find an extremal of the functional

$$
\int_{a}^{b} F\left(x, y(x), y^{\prime}(x), y^{\prime \prime}(x)\right) d x
$$

among all smooth functions $y(x)$ which satisfy the boundary conditions

$$
y(a)=y(b)=0
$$

Show that such an extremal must be a solution of the differential equation

$$
\frac{\partial F}{\partial y}-\frac{d}{d x}\left(\frac{\partial F}{\partial y^{\prime}}\right)+\frac{d^{2}}{d x^{2}}\left(\frac{\partial F}{\partial y^{\prime \prime}}\right)=0
$$

and must satisfy the natural boundary conditions

$$
\frac{\partial F}{\partial y^{\prime \prime}}=0 \quad \text { at } \quad x=a \quad \text { and } \quad x=b
$$

2. An elastic beam has vertical displacement $y(x), x \in[0, l]$. (The x-axis is horizontal and the y-axis is vertical and directed upwards.) The ends of the beam are supported, that is, $y(0)=y(l)=0$, and the displacement minimizes the energy

$$
\int_{0}^{l}\left\{\frac{1}{2} D\left[y^{\prime \prime}(x)\right]^{2}+\rho g y(x)\right\} d x
$$

where D, ρ and g are positive constants. Write down the differential equation and the boundary conditions that $y(x)$ must satisfy and show that

$$
y(x)=-\frac{\rho g}{24 D} x(l-x)\left(l^{2}+x(l-x)\right) .
$$

3. Find an extremal corresponding to

$$
\int_{-1}^{1} y d x
$$

when subject to $y(-1)=y(1)=0$ and

$$
\int_{-1}^{1}\left(y^{2}+y^{\prime 2}\right) d x=1
$$

4 (a) Suppose that $F: \mathbb{R}^{7} \rightarrow \mathbb{R}$ is a C^{2}-function and that the C^{2}-function $u: \mathbb{R}^{3} \rightarrow \mathbb{R}$ gives a stationary value to the integral

$$
\iiint_{V} F\left(x, y, z, u, u_{x}, u_{y}, u_{z}\right) d x d y d z
$$

and satisfies $u=f$ on the smooth simple closed surface $\partial \vee$ which bounds the open set \vee in \mathbb{R}^{3}. Show that u satisfies the Euler equation

$$
\frac{\partial}{\partial x}\left(\frac{\partial F}{\partial u_{x}}\right)+\frac{\partial}{\partial y}\left(\frac{\partial F}{\partial u_{y}}\right)+\frac{\partial}{\partial z}\left(\frac{\partial F}{\partial u_{z}}\right)=\frac{\partial F}{\partial u}
$$

(b) Let $\mathrm{V}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}<1\right\}$. Find an extremal $u=u(x, y, z)$ for the problem of minimizing the integral

$$
\iiint_{V}\left(u_{x}^{2}+u_{y}^{2}+u_{z}^{2}\right) d x d y d z
$$

when subject to the constraints

$$
\iiint_{V} u \quad d x d y d z=4 \pi
$$

and $u=1$ on the boundary of \vee
5. Let p be a positive real-valued function differentiable on the bounded interval $[a, b]$ and let q and r be positive real-valued continuous functions on $[a, b]$. Show that the extremals of

$$
J(y)=\int_{a}^{b}\left(p y^{\prime 2}+q y^{2}\right) d x
$$

subject to the constraint

$$
\int_{a}^{b} r y^{2} d x=1
$$

must satisfy

$$
\begin{equation*}
\left(p y^{\prime}\right)^{\prime}+(-q+\lambda r) y=0 \tag{A}
\end{equation*}
$$

with $p y^{\prime}=0$ at $x=a$ and $x=b$.
Show that if y_{1} and y_{2} are solutions to (A) for $\lambda=\lambda_{1}, \lambda_{2}$ respectively, where $\lambda_{1} \neq \lambda_{2}$, then

$$
\begin{equation*}
\int_{a}^{b} r y_{1} y_{2} d x=0 \tag{B}
\end{equation*}
$$

Find the extremals of $\int_{0}^{\pi} y^{\prime 2} d x$ subject to $\int_{0}^{\pi} y^{2} d x=1$ and the corresponding values of λ.Verify that these extremals satisfy (B).

