ALGEBRA III – GROUP THEORY – SHEET 1

Isomorphism Theorems. Free Groups. Generators and Relations. Composition Series.

1. Let H and K be subgroups of a group G. Show that $HK = \{hk : h \in H, k \in K\}$ is a subgroup of G if and only if

HK = KH.

2. Let $K \triangleleft G$. Denote $\overline{G} = G/K$ and let $\overline{H} \leq \overline{G}$. Show that

$$H = \left\{ h \in G : hK \in \bar{H} \right\}$$

is a subgroup of G, containing K as a normal subgroup and such that $H/K = \overline{H}$. Show further that if \overline{H} is normal in \overline{G} then H is normal in G.

3. Identify the following groups from the given presentations.

 $\begin{array}{l} ({\rm i}) \ G_1 = \langle x \, | \, x^6 = e \rangle. \\ ({\rm ii}) \ G_2 = \langle x, y \, | \, xy = yx \rangle. \\ ({\rm iii}) \ G_3 = \langle x, y \, | \, x^3y = y^2x^2 = x^2y \rangle. \\ ({\rm iv}) \ G_4 = \langle x, y \, | \, xy = yx, \, x^5 = y^3 \rangle. \\ ({\rm v}) \ G_5 = \langle x, y \, | \, xy = yx, \, x^4 = y^2 \rangle. \end{array}$

[For G_4 you may wish to consider the homomorphism $\phi \colon \mathbb{Z}^2 \to \mathbb{Z}$ given by $\phi(a, b) = 3a + 5b$.]

4. Let G be a non-abelian group of order 8. We know then that all elements have order 1, 2 or 4 and there exist elements of order 4. [How do we know this?] Let a be an element of order 4, set $A = \langle a \rangle$ and let $b \in G \setminus A$. Show that $b^{-1}ab = a^{-1}$ and that either $b^2 = e$ or $b^2 = a^2$. Use this to prove that up to isomorphism there are just five groups of order 8. [You may assume that any finite abelian group is a direct product of cyclic groups.]

5. Let $G = \langle x, y | x^2 = e = y^2 \rangle$ and let D_{∞} denote the isometry group of \mathbb{Z} , the *infinite dihedral group*.

(i) Show that G is infinite.

(ii) Let z = xy. Show that every element of G can be uniquely written as z^k or yz^k where k is an integer. Show that $G = \langle y, z | y^2 = e, yzy = z^{-1} \rangle$.

(iii) Show that y(n) = -n and z(n) = n+1 are elements of D_{∞} . Deduce that $G \cong D_{\infty}$.

6. (i) Let $n \ge 1$. Show that (12) and (123...n) generate S_n .

(ii) Show that \mathbb{Q} is not finitely generated.

7. Write down all possible composition series of the following groups, verifying the Jordan-Hölder Theorem where appropriate.

$$\mathbb{Z}_{12}, \quad D_{10}, \quad D_8, \quad Q_8.$$

8. (Optional) Let

 $\{e\} \lhd G_1 \lhd G$ and $\{e\} = H_0 \lhd H_1 \lhd \cdots \lhd H_r = G$

be two composition series for a group G. Why is $r \ge 2$? Why is r = 2 if $H_{r-1} = G_1$? Show that if $H_{r-1} \ne G_1$ then $G_1 \cap H_{r-1} = \{e\}$. Show that G_1H_{r-1} is normal in G and that $G/G_1 = H_{r-1}$. Deduce that r = 2.