Communication Theory MT18 Sheet 2

- 1. Fix $p > 0$. We are given a fair coin and want to generate independent samples from a Bernoulli random variable $\mathbb{P}(X = 1) = p$, $\mathbb{P}(X = 0) = 1 - p$. Find an algorithm that does this, such that the expected number of needed coin flips to generate one sample of *X* is less or equal than 2.
- 2. Let $q \in [0,1]$, $n \in \mathbb{N}$ such that nq is an integer in the range $[0,n]$. Show that

$$
\frac{2^{nH(q)}}{n+1} \le \binom{n}{nq} \le 2^{nH(q)}
$$

where $H(q) := -q \log q - (1 - q) \log(1 - q)$ is the entropy of a Bernoulli distributed random variable.

3. Let X_1 be a $X_1 = \{1, \ldots, m\}$ valued random variable and X_2 be a $X_2 = \{m+1, \ldots, n\}$ -valued random variable. Further assume X_1 and X_2 to be independent. Define a random variable X as

$$
X=X_\theta
$$

where θ is random variable such that $\mathbb{P}(\theta = 1) = \alpha$, $\mathbb{P}(\theta = 2) = 1 - \alpha$ for some $\alpha \in [0, 1]$ and θ is independent of X_1 and independent of X_2 .

- (a) Express $H(X)$ as a function of $H(X_1), H(X_2), H(\theta)$ and α .
- (b) Show that $2^{H(X)} \le 2^{H(X_1)} + 2^{H(X_2)}$. For which α does this become an equality?
- 4. The *differential entropy* of a \mathbb{R}^n -valued random variable *X* with density *f* is defined as

$$
h(X) := -\int f(x) \log f(x) dx
$$

(with the integration over the support of f). Calculate $h(X)$ when

- (a) X is uniformly distributed on [0, 1],
- (b) *X* is standard normal distributed,
- (c) *X* is exponential distributed with parameter λ .
- 5. Let *X* be a \mathbb{R}^n -valued random variable with zero mean and covariance matrix Σ . Show that

$$
h(X) \le \frac{1}{2} \log (2\pi e)^n |\Sigma|
$$

with equality iff *X* is multivariate normal.

6. A Markov chain is a sequence of discrete random variables $(X_n)_{n\geq 1}$ such that for all $x_1, \ldots, x_{n+1} \in X$

$$
\mathbb{P}(X_{n+1}=x_{n+1}|X_n=x_n,\ldots,X_1=x)=\mathbb{P}(X_{n+1}=x_{n+1}|X_n=x_n).
$$

The chain is called homogenous if $p_n(x, y) := \mathbb{P}(X_{n+1} = y | X_n = x)$ does not dependend on *n* (for every *x*, *y* ∈ *X*). In this case we call $(p(x, y))_{x, y \in X}$ the transition matrix of (X_n) . A fair die is rolled repeatedly. Which of the following are Markov chains? For those that are, give the transition matrix.

- (a) X_n is the largest roll up to the *n*th roll,
- (b) X_n is the number of sixes in *n* rolls,
- (c) X_n is the number of rolls since the most recent six,
- (d) X_n is the time until the next six.
- 7. Let (X_n) be a Markov chain. Which of the following are Markov chains?
	- (a) $(X_{m+n})_{n\geq 1}$ for a fixed $m \geq 0$,
	- (b) $(X_{2n})_{n\geq 1}$,
	- (c) $(Y_n)_{n\geq 1}$ with $Y_n := (X_n, X_{n+1})$.
- 8. Prove the strong AEP: denote with S_{ϵ}^{n} *n* the smallest subset of X^n such that $\mathbb{P}(X \in S_n^{\epsilon}) \ge 1 - \epsilon$ where ϵ such that $\mathbb{P}(X \in S_n^{\epsilon}) \ge 1 - \epsilon$ where $X = (X_1, \ldots, X_n)$ are iid copies of a X-valued rv X. Then for any sequence (ϵ_n) with $\lim_{n \to \infty} \epsilon_n = 0$ we have

$$
\lim_{n \to \infty} \frac{1}{n} \log \frac{|\mathcal{S}_n^{\epsilon_n}|}{|\mathcal{T}_n^{\epsilon_n}|} = 0.
$$

[Hint: show that $\mathbb{P}(A \cap B) > 1 - \epsilon_1 - \epsilon_2$ for any sets with $\mathbb{P}(X \in A) > 1 - \epsilon_1 \cdot \mathbb{P}(X \in B) > 1 - \epsilon_2$ and use this to estimate $\mathbb{P}(S_n^{\epsilon} \cap \mathcal{T}_n^{\epsilon})$]