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The Branch & Cut Framework

Data Specification (Branch & Cut)

Input data:

objective max cTx;
constraints Ax = b with A, b integer valued, defining feasible set X = {x ∈ Zn : Ax = b, x ≥ 0};

Global data:
global pool of valid inequalities A(0)x ≤ b(0) for X ;
global dual bound z̄;
global primal bound z;
list AN of active nodes;
node counter k;

Local (node level) data:

local inequalities A[j ]x ≤ b[j ];

local polyhedron P
[j ], defining node feasible set X

[j ] = P
[j ] ∩ Zn ;

node dual bound z̄ [j ];

node primal bound z [j ];
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Methods (Branch & Cut)

function [x [j ], P
[j ]] = addCuts(x [j ], P

[j ])

// input x [j ] = arg max{cTx : x ∈P
[j ]} optimised via simplex

while P
[j ] 6= ∅, x [j ] fractional and ∃ sufficiently deep cut in pool do

find cut A
[0]
i

x [j ] > b
[0]
i

in pool of valid inequalities;

P
[j ] ←P

[j ] ∩ {x : A
[0]
i

x ≤ b
[0]
i
};

re-optimise x [j ] via dual simplex;

end

while P
[j ] 6= ∅, x [j ] fractional and sufficiently deep new cuts generated do

generate cut αTx [j ] > α0 with αTx ≤ α0 a valid inequality for X ;

{A[0]x ≤ b[0]} ← {A[0]x ≤ b[0]} ∪ {αTx ≤ α0}; // add valid inequality to pool

P
[j ] ←P

[j ] ∩ {x : αTx ≤ α0};

re-optimise x [j ] via dual simplex;

end

if P
[j ] = ∅ then

x [j ] = NaN;
end
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Algorithm (Branch & Cut)

k = 1, A[1], b[1] = ∅, AN= {1}, z = −∞, z̄ = +∞, x∗ = NaN, {A[0]x ≤ b[0]} = ∅; // initialisation

while AN 6= ∅ do
choose j ∈ AN;

if z̄ [j ] ≤ z then
AN← AN \ {j}; // pruning

else

P
[j ] = {x ∈ Rn : Ax = b, A[j ]x ≤ b[j ], x ≥ 0};

x [j ] := arg max{cTx : x ∈P
[j ]}; // simplex warmstart from parent’s initial subproblem

[x [j ], P
[j ]] = addCuts(x [j ], P

[j ]);

z̄ [j ] := cTx [j ]; // z̄ [j ] := −∞ if x [j ] = NaN

z̄ := max{z̄ [ℓ] : ℓ ∈ AN}; // update global upper bound

if x [j ] integer valued then y [j ] := x [j ];

else attempt to find y [j ] ∈X
[j ] via heuristic;

z [j ] := cTy [j ]; // set z [j ] := −∞ if y [j ] unassigned

if z [j ] > z then

x∗ := y [j ]; // update incumbent

z := z [j ]; // update global lower bound

end

if ∃ x
[j ]
ℓ

fractional then

{A[k+i ]x ≤ b[k+i ]} := {A[j ]x ≤ b[j ]} ∪

{

{x ≤ ⌊x
[j ]
ℓ
⌋}, (i = 1),

{x ≥ ⌈x
[j ]
ℓ
⌉}, (i = 2)

;

z̄ [k+i ] := z̄ [j ], (i = 1, 2); // inherit dual bound from parent

AN← (AN \ {j}) ∪ {k + 1, k + 2}, k ← k + 2; // branching

end

end

end

R. Hauser B6.3 Integer Programming



The Branch & Cut Framework
Cover Inequalities

Algorithm Design Steps

Adapting the branch-and-cut framework to a specific problem class

involves the following steps:

1 Identification of structural properties of the problem class.

2 Use polyhedral analysis to translate the structural properties into

classes of valid inequalities to be used as cuts.

3 For each class C of valid inequalities, identify an efficient procedure

to solve the associated separation problem: Given x∗ /∈ X , find a

valid inequality αTx ≤ α0 for X among class C such that

αTx∗ > α0.
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Example (Search index construction)

The following example is due to Fischetti:

Relational data bases use a small number of search indices to use in queries of m different types. We
need to choose which among a set of candidate indices {1, . . . , n} to build and maintain so as to
minimise the expected cost. j = 0 represents a default index available without fixed cost:

min
y,x

n
∑

j=1

cj yj +
m
∑

i=1

n
∑

j=0

γij xij

s.t.
n

∑

j=1

dj yj ≤ D

n
∑

j=0

xij = 1, (i = 1, . . . ,m)

m
∑

i=1

xij ≤ myj , (j = 1, . . . , n)

xij , yj ∈ {0, 1}, (i = 1, . . . ,m; j = 0, . . . , n).

For example, n = 5, m = 6, D = 19,

[γij ] =















6200 1300 6200 6200 6200 6200
2000 900 700 2000 2000 2000
800 800 800 800 800 800
6700 6700 6700 1700 6700 2700
5000 5000 5000 2200 1200 4200
2000 2000 2000 2000 2000 750















, [cj ] =











200
1200
400
2400
250











, [dj ] =











10
5
10
8
6
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Example (Search index construction continued)

The optimal solution (x∗, y∗) of the LP relaxation can never give a tight dual bound, because the
big-M constraint

∑m
i=1

x∗

ij ≤ my∗

j and the optimality of y∗ imply that

y
∗

j =
1

m

m
∑

i=1

x
∗

ij

is always fractional, unless all xij = 1 for the same index j.

Variable fixing: γij ≥ γi0 ⇒ xij = 0. This removes all variables xij bar x10, . . . , x60, x11, x21, x22, x43,
x53, x54, x45, x55, x65, and it allows to tighten the big-M constraints to

m
∑

i=1

x
∗

ij ≤ |Ij |yj ,

where |Ij | = {i : γij < γi0}.

Now solving the LP relaxation yields the primal bound 8,940 and the following non-zero values
x∗

20
= 6/10, x∗

30
= 1, y∗

1
= 7/10, x∗

11
= 1, x∗

21
= 4/10, y∗

3
= 1, x∗

43
= x∗

53
= 1, y∗

5
= 1/3, x∗

65
= 1.
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Example (Search index construction continued)

In a similar discussion of the UFL we previously noticed that the big-M constraint
∑m

i=1
xij ≤ |Ij |yj may

be replaced by the strong formulation given by the valid inequalities

Class C1: xij ≤ yj , (j ∈ [1, n]; i ∈ Ij ).

Rather than imposing all of these constraints at each node of the branch-and-cut algorithm, we only use
these as cuts when needed. In our case, the valid inequality x11 ≤ y1 is a cut of x∗, because
x∗

11
= 1 > y∗

1
.

The separation problem associated with class C1 is straightforward to solve via enumeration and
scanning. In addition to the cut x11 ≤ y1, we also find the cut x65 ≤ y5.

After adding the two cuts to the formulation, we re-optimise the LP solution via dual simplex pivots and
obtain the primal bound 9, 900 and the following nonzero components: x∗

30
= 1, x∗

60
= 3/4, y∗

1
= 1,

x∗

11
= x∗

21
= 1, y∗

3
= 3/4, x∗

43
= 3/4, x∗

53
= 3/4, y∗

5
= 1/4, x∗

45
= x∗

55
= x∗

65
= 1.

None of the inequalities of class C1 are violated. However, note that y1 + y3 ≤ 1 is a valid inequality,
because d1 + d3 > 19, hence this is a cut for (x∗, y∗). More generally, we consider the following valid
inequalities

Class C2:
∑

j∈S

yj ≤ |S| − 1, ∀ S ⊆ [1, n] s.t.
∑

j∈S

dj > D.
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Example (Search index construction continued)

To solve the separation problem associated with class C2 and find the indicator vector z ∈ {0, 1}n of a
set S such that

n
∑

j=1

y
∗

j zj =
∑

j∈S

y
∗

j > |S| − 1 =

n
∑

j=1

zj − 1,

n
∑

j=1

dj zj =
∑

j∈S

dj ≥ D + ε

for some sufficiently small ε.

We can find the deepest cut from this class by solving the knapsack problem

w
∗

= min
z

n
∑

j=1

(1− y
∗

j )zj

s.t.
n

∑

j=1

dj zj ≥ D + ε,

zj ∈ {0, 1}, (j ∈ [1, n])

and checking if w∗ < 1. The knapsack problem is quite easy to solve via branch-and-bound and allows
for variable fixing zj = 1 if yj = 1, which reduces the number of variables.
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Example (Search index construction continued)

Adding the cut y1 + y3 ≤ 1 from class C2 to the formulation and re-optimising the LP relaxation via
dual simplex iterations yields the primal bound 10,880 and non-zero variables x∗

30
= 1, y∗

1
= 1,

x∗

11
= x∗

21
= 1, y∗

4
= 3/8, x∗

54
= 3/8, y∗

5
= 1, x∗

45
= x∗

65
= 1, x55 = 5/8.

Class C1 does not yield any violated inequalities, but from C2 we find the cut y1 + y4 + y5 ≤ 2. Adding
this inequality to the formulation and re-optimising the LP yields the primal bound 11,100 and the
non-zero variables x∗

30
= 1, y∗

1
= 1, x∗

11
= x∗

21
= 1, y∗

5
= 1, x∗

45
= x∗

55
= x∗

65
= 1, which is integral

valued and hence (IP)-optimal.

In general, using cuts from classes C1 and C2 in the branch-and-cut

framework reduces the number of nodes generated by 2 or 3 orders of

magnitude over straight-forward branch-and-bound when applied to

larger search index construction problems.

Class C2 can be generalised to other binary programming problems,

where they are known as cover inequalities.
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Cover Inequalities

Definition (Cover Inequality)

Let aTx ≤ r with a ∈ Rn
+, r ∈ R+ be a constraint on binary decision variables xi ∈ {0, 1}. A cover of

this constraint is a subset C ⊆ {1, . . . , n} such that
∑

j∈C aj > r .

A cover is minimal if no strict subset S ( C is a cover.

The cover inequality associated with a cover C is the inequality
∑

j∈C xj ≤ |C | − 1.

Proposition

i) The cover inequality
∑

j∈C xj ≤ |C | − 1 associated with a cover C of the constraint aTx ≤ r is

a valid inequality for {x ∈ {0, 1}n : aTx ≤ r}.

ii) If S ⊂ C is also a cover, then the cover inequality
∑

j∈S xj ≤ |S| − 1 is stronger than the cover

inequality associated with C.

iii) Only cover inequalities associated with minimal covers are essential.

Proof. i) Suppose to the contrary that ∃ x ∈ {0, 1}n such that aTx ≤ r and
∑

j∈C xj ≥ |C |. Since x is

binary, this implies xj = 1 ∀ j ∈ C , and then, using aj ≥ 0,

a
T

x ≥
∑

j∈C

aj xj =
∑

j∈C

aj > r. E
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ii) We need to show that for x ∈ {0, 1}n ,
∑

j∈S xj ≤ |S| − 1 implies
∑

j∈C xj ≤ |C | − 1 (but not

necessarily the other way round). Let Sc
0

= {j ∈ C \ S : xj = 0} and Sc
1

= {j ∈ C \ S : xj = 1}. Then

∑

j∈C

xj =
∑

j∈S

xj +
∑

j∈Sc
1

xj ≤ |S| − 1 + |Sc
1
| ≤ |C | − 1.

iii) If the cover C is not minimal, then there exists a cover S ( C , and by Part ii) the cover inequality
associated with S renders the inequality

∑

j∈C xj ≤ |C | − 1 redundant.

Algorithm (Minimal cover separation)

Input: a ∈ Rn
+, r ∈ R+, x∗ ∈ {0, 1}n such that aTx∗ > r ;

Output: minimal cover C whose associated cover inequality is a cut for x∗;
Initialise: C = ∅, ℓ = 1;
compute list I = {j1, . . . , jk} = {j : x∗

j > 0} ordered such that aj1
≥ · · · ≥ ajk

;

while ℓ ≤ k and
∑

j∈C aj ≤ r do

C ← C ∪ {jℓ};
ℓ← ℓ + 1;

end
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Definition (Extended cover Inequality)

Let aTx∗ > r with a ∈ Rn
+, r ∈ R+, and let

∑

j∈C xj ≤ |C | − 1 be the cover inequality with the

minimal cover C constructed by Algorithm (Minimal cover separation), and a∗ := aj1
= maxj∈C aj . Let

E = {j : aj > a∗}. The associated extended cover inequality is defined as
∑

j∈C∪E xj ≤ |C | − 1.

Note that, although C ∪ E is a cover, the extended cover inequality is not the cover inequality
associated with C ∪ E , because the right-hand side is |C | − 1, not |C ∪ E | − 1.

Proposition

i) The extended cover inequality
∑

j∈C∪E xj ≤ |C | − 1 is a valid inequality for the set

{x ∈ {0, 1}n : aTx ≤ r}.

ii) The extended cover inequality is stronger than the cover inequality
∑

j∈C xj ≤ |C | − 1.

Proof. i) Suppose to the contrary that ∃ x ∈ {0, 1}n such that aTx ≤ r and
∑

j∈C∪E xj ≥ |C |. Then

x is a binary vector with at least |C | components equal to 1. Using aj , xj ≥ 0 ∀ j and aj > a∗ ∀ j ∈ E
by construction, we find

a
T

x ≥
∑

j∈C∪E

aj xj ≥
∑

j∈C

aj > r. E

ii) We need to show that for x ∈ Rn
+,

∑

j∈C∪E xj ≤ |C | − 1 implies
∑

j∈C xj ≤ |C | − 1 (but not

necessarily the other way round). This follows trivially from the disjointness of C and E and xj ≥ 0.
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Lifted Cover Inequalities

Lemma (Lifting valid inequalities)

Let S := {j1, . . . , jt} ⊂ [1, n], α0, αjs ≥ 0, (s = 1, . . . , t), a ∈ Rn
+ and r ∈ R+ be given such that

∑t
s=1

αjs xjs ≤ α0 is a valid inequality for the set {x ∈ {0, 1}n : aTx ≤ r}. Let jt+1 ∈ [1, n] \ S and

ζt+1 := max
t

∑

s=1

αjs xjs

s.t.

t
∑

s=1

ajs xjs + ajt+1
≤ r,

xjs ∈ {0, 1}, (s = 1, . . . , t).

Then for every αjt+1
∈ [0, α0 − ζt ] the lifted inequality

∑t+1

s=1
αjs xjs ≤ α0 is valid for the set

{x ∈ {0, 1}n : aTx ≤ r}. Furthermore, the larger αt+1, the stronger the inequality.

Proof. Let x ∈ {0, 1}n be such that aTx ≤ r . If xjt+1
= 0, then the lifted inequality follows from the

validity of the unlifted inequality. If xjt+1
= 1, then x satisfies the constraints of the optimisation

problem, and hence,
∑t

s=1
αjs xjs ≤ ζt+1, with ζt+1 ≥ 0 because αjs , xjs ≥ 0, (s = 1, . . . , t).

Therefore,
t

∑

s=1

αjs xjs + αjt+1
xjt+1

≤ ζt+1 + α0 − ζt+1 = α0.

Furthermore, if 0 ≤ α[1] < α[2] ≤ α0 − ζt , then for x ∈ Rn
+,

∑t
s=1

αjs xjs + α[2]xjt+1
≤ α0 implies

∑t
s=1

αjs xjs + α[1]xjt+1
≤ α0, but not necessarily the other way round.
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Let x∗ ∈ Rn
+ be such that aTx∗ > r with a ∈ Rn

+, r ∈ R+. We would like to use a tight lifted cover

inequality to cut x∗ from the set {x ∈ {0, 1}n : aTx ≤ r}. The following algorithm solves this
separation problem:

Algorithm (Separation by lifted cover inequalities)

using Algorithm (Minimal cover separation), find minimal cover inequality
∑

j∈C xj ≤ |C | − 1;

fix an ordering j1, . . . , jp of [1, n] \ C ;
for t = 1 to p do

using branch & bound, solve knapsack problem

ζt := max

t−1
∑

s=1

αjs xjs +
∑

j∈C

xj

s.t.

t−1
∑

s=1

ajs xjs +
∑

j∈C

aj xj + ajt
≤ r,

xj ∈ {0, 1}, (j ∈ C ∪ {js : s ∈ [1, t − 1]});

αjt
:= |C | − 1− ζt ;

end

Proof of Correctness: By construction, the cover inequality
∑

j∈C xj ≤ |C | − 1 is a cut for x∗, and

applying Lemma (Lifting valid inequalities) recursively, it follows that the lifted cover inequality
∑p

s=1
αjs xjs +

∑

j∈C xj ≤ |C | − 1 is a valid inequality stronger than the cover inequality. Hence, it is

also a cut for x∗.

R. Hauser B6.3 Integer Programming



The Branch & Cut Framework
Cover Inequalities

Example (Generalised Assignment Problem by Branch & Cut)

A fairly general class of IPs is the Generalised Assignment Problem (GAP) that takes the following form,
which uses a combination of knapsack and assignment constraints:

(GAP) max
x

m
∑

i=1

n
∑

j=1

pij xij

s.t.
n

∑

j=1

cij xij ≤ bi , (i = 1, . . . ,m)(1)

m
∑

i=1

xij = 1, (j = 1, . . . , n)(2)

xij ∈ {0, 1}, (i = 1, . . . ,m; j = 1, . . . , n).

GUB/SOS branching (see Lecture 9) on the assignment constraints (2) ensures that the feasible sets of
subproblems are balanced (children of the same parent node have approximately equal cardinality).

Cuts for optimal solutions x∗ of LP relaxed subproblems can be constructed in the form of lifted cover
inequalities deriving from the knapsack constraints (1).

The branch & cut algorithm solves the problem in two to three orders of magnitude fewer nodes than
the branch & bound approach.

R. Hauser B6.3 Integer Programming


	The Branch & Cut Framework
	Cover Inequalities

