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Q1 (limit cycles) We consider the system given by

ẋ = −y + xf(
√
x2 + y2),

ẏ = x+ yf(
√
x2 + y2), (1)

where f(r) = sin r. By denoting r2 = x2 + y2 the corresponding dynamical
system in polar coordinates r(t) and θ(t) takes the form:

rṙ = xẋ+ yẏ =⇒ ṙ = r sin(r), (2)

and

θ̇ =
d

dt

(
tan−1

(y
x

))
θ̇ =

xẏ − ẋy
x2 + y2

=⇒ θ̇ = 1,

which suggests that the trajectories rotate anti-clockwise around the origin.
Determination of the fixed points and periodic orbits, along with their

stability, is found from (2). In particular, the fixed point (0, 0) is an unstable
spiral whilst there are asymptotically stable periodic orbits at radii r =
(2n−1)π and unstable periodic orbits for r = 2πn for n ∈ Z+. If we were to
consider negative radii, the opposite results would apply, given that (2) is an
even function (see Fig. 1); explicitly, asymptotically stable periodic orbits
occur at r = 2nπ and unstable periodic orbits at r = (2n− 1)π for n ∈ Z−.
Phase-plane dynamics of (1) for positive and negative radii is plotted in Fig.
1.

Q2 (a bead on a wire) Consider the equation

d2θ

dt2
+
g

L
sin θ − w2 sin θ cos θ = 0, (3)
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Figure 1: Plot of (2) and phase planes of (1) for r > 0 (shown left) and r < 0
(shown right).

which can be further simplified by rescaling time t
√
g/L → t for g, L > 0,

and regrouping the parameters:

d2θ

dt2
+ sin θ − 4α sin θ cos θ = 0,

where α = ω2L/4g.
(i) : We separate it into the dynamical system:

θ̇ = y, ẏ = − sin θ + 4α sin θ cos θ, (4)

which has fixed points given by y = 0 and:

sin θ = 0,

cos θ =
1

4α
, (5)

the latter of which is unsolvable unless α ≥ 1/4.
The behavior of the system is as follows: At α = ω = 0, there are

three fixed points θ = {−π, 0, π}, which are unstable (saddle by lineariza-
tion), Lyapunov stable (circle by linearization), and unstable (saddle by
linearization) respectively. As α increases, there is a supercritical pitchfork
bifurcation at α = 1/4. The Lyapunov stable solution of θ = 0 now be-
comes unstable (saddle node) and two Lyapunov stable solutions (centers),
obtained by solving (5), are introduced. Both of these branches tend to
±π/2 as α→∞ (see Fig. 2).
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Figure 2: Bifurcation diagram of (3) with solid and dashed lines corresponding to
Lyapunov stable and unstable solutions, respectively.

(ii) : We can rewrite (3) as

d2θ

dt2
+ sin θ − 2α sin(2θ) = 0,

which has the first integral

1
2
θ̇2 + V (θ) = E, (6)

for integration constant E and potential V (θ) = − cos θ + α cos(2θ).
For the bead to continually circle the hoop in one direction, we require

more energy than the maximum value of V (θ) which is α + 1. Trajectories
that initially start at θ = π/2 correspond to V = −α. Therefore, from (6):

1
2
θ̇2 + V

(π
2

)
= α+ 1 =⇒ θ̇ =

√
2(2α+ 1),

is the minimum velocity of the bead.
As such, if the bead is initially at θ = π/2, then the bead will contin-

ually circle the hoop provided |θ̇| >
√

2(2α+ 1). Note that the equality
corresponds to the bead tending to the potential maximum as t→∞.
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(iii) : Adding linear dampening to (3) we obtain:

d2θ

dt2
− µdθ

dt
+
g

L
sin θ − w2 sin θ cos θ = 0,

with dampening corresponding to µ < 0. We rescale Lµ/g → µ and
t
√
g/L→ t to obtain from (7):

d2θ

dt2
− µdθ

dt
+ sin θ − 4α sin θ cos θ = 0, (7)

where α = ω2Lg/4, which can be split into the dynamical system:

θ̇ = y, ẏ = µy − sin θ + 4α sin θ cos θ, (8)

which has the same fixed points given by (5). Taking the Jacobian of the
latter system, we find:

Df(θ, y) =
[

0 1
− cos θ + 4α cos 2θ µ

]
. (9)

We note from (9) that, for dampening µ < 0 case α < 1/4 now corresponds
to a stable node whilst α > 1/4 gives a saddle; that is, α = 1/4 is the
critical value for the appearance of an instability at this fixed point. Phase
plot portraits of (7) with µ = −1 for α = 0.1 and α = 1 are shown in Fig.
3.

Q3 (centre manifold to the third order) Consider the system

ẋ = y − x− x2, (10)
ẏ = µx− y − y2. (11)

The Jacobian at origin is given by

Df(0, 0) =
[
−1 1
µ −1

]
.

and has eigenvalues given by:

λ = −1±√µ,

which suggests that a bifurcation occurs at the origin when µ = 1, for this
is a particular value associated with Re(λ) = 0.
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Figure 3: Phase-plane plots of (7) for µ = −1 and α = 0.1 (shown left) and α = 1
(shown right).

The associated linear subspaces are:

Es = span{(−1, 1)T }, Ec = span{(1, 1)T }.

We suppose the center manifold at the origin can be expressed to third order
as:

y = h(x) = x+ a2x
2 + a3x

3 +O(x4), (12)

where a0 = 0 and a1 = 1, so that the extended center manifold intersects
with Ec at the origin and lies tangent to it. Substituting (12) into (11), we
find:

(a2−1)x2+(a3+2a2
2−2a2)x3+O(x4) = (−1−a2)x2+(−2a2−a3)x3+O(x4),

which suggests that a2 = 0 and a3 = 0, so that the center manifold at µ = 1
is given by:

y = x+O(x4). (13)

Substituting (13) into (10) gives the reduced evolution on the center mani-
fold:

ẋ = −x2, (14)

The phase-plane plot of (10)-(11) for µ = 1 is shown in Fig. 4. Additionally,
analysing the extended center manifold for µ 6= 0 one can show that system
(10)-(11) undergoes a transcritical bifurcation at the origin for µ = 1.
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Figure 4: Phase-plane plot of (10)-(11) for µ = 1 along with the center manifold
(14) (shown in blue).

Q4 (a 1D map) We consider the map

xn+1 = (1 + µ)xn − µx2
n = f(xn, µ), (15)

for µ ≥ 0.
(i) : To find the fixed points x∗, we solve the equation:

x∗ = (1 + µ)x∗ − µ(x∗)2,

which gives the solutions x∗ = {0, 1}.
We calculate the corresponding stability by determining ∂f/∂x evaluated

at x∗. From (15), we find:

∂f

∂x
(x∗) = (1 + µ)− 2µx∗,

∂f

∂x
(0) = 1 + µ,

∂f

∂x
(1) = 1− µ, (16)

which implies that x∗ = 0 is unstable for all µ > 0 and x∗ = 1 is stable for
µ ∈ (0, 2) and unstable for µ > 2.

(ii) : To determine the period-2 cycles, we solve the equation:

x∗ = f(f(xn;µ)) = (1 + µ)
[
(1 + µ)x∗ − µ(x∗)2

]
− µ

[
(1 + µ)x∗ − µ(x∗)2

]2
,

0 = µx∗
[
(2 + µ)− (2 + 3µ+ µ2)x∗ + 2µ(1 + µ)(x∗)2 − µ2(x∗)3

]
. (17)
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We note that both x∗ = 0 and x∗ = 1 are solutions, because any fixed point
is also a period-2 cycle. Therefore, we can reduce (17) to

µ2(x∗)2 − (µ2 + 2µ)x∗ + µ+ 2 = 0,

which by solving the quadratic polynomial, implies that the period-2 cycle
is comprised of the points:

x1,2 =
µ+ 2±

√
µ2 − 4

2µ
. (18)

To determine the stability of this periodic orbit, we calculate:

λ =
∂f

∂x
(x2)

∂f

∂x
(x1). (19)

Expanding (19) we find:

λ = [(1 + µ)− 2µx2][(1 + µ)− 2µx1],
= (1 + µ)2 − 2µ(1 + µ)[x1 + x2] + 4µ2x1x2,

= 5− µ2. (20)

Therefore, the period-2 cycle is stable if |5 − µ2| < 1, which suggests that
µ ∈ (2,

√
6), and unstable for µ ∈ (

√
6, ∞). We show the asymptotic

convergence to this periodic orbit on a cobweb plot in Fig. 5.

Figure 5: Left: Cob-web plot showing the asymptotic convergence to the period-2
cycle determined by (18) for x0 = 1.1 and µ = 2.2. Right: Analytic bifurcation
diagram obtained by using the results (16), (18) and (20).

7



(iii) and (iv) : Using the results from (i) and (ii), in particular, (16), (18)
and (20), we can construct the bifurcation diagram shown in Fig. 5. Note
that at µ =

√
6, stable period-4 cycles branch from the period-2 cycles,

which now become unstable. As µ further increases, the period doubling
cascades into chaos. (see Fig. 6 for the numerically generated bifurcation
diagram).

Figure 6: Numerical bifurcation diagram showing the stable orbits of (15).

Q5 (stability of periodic orbits) We consider a 1D map

xn+1 = f(xn),

and assume that it supports a p-periodic orbit {x1, x2, ..., xp} such that
xi 6= xj , ∀i, j ∈ {1, ..., p} with i 6= j, and xp+1 = x1.

By the definition of a p-periodic orbit:

x1 = fp(x1) = f(xp).
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To determine the stability of this periodic cycle, we find:

λ =
d

dx1
(fp(x1)) =

d

dx1
(f(xp)),

(Chain rule) =
df(xp)
dxp

dxp

dx1
,

(Definition of map) =
df(xp)
dxp

df(xp−1)
dx1

,

(Repeating) =
df(xp)
dxp

df(xp−1)
dxp−1

...
df(x1)
dx1

,

which gives the required result that

λ =
i=p∏
i=1

f ′(xi)

determines the stability.
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