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Q1 (center manifold to fourth order) We consider the system

i = ay+ar®+ zy? (1)
b 4 2%y, )

() : The linearisation at origin gives:

pro.0=| g % | 0

and is independent of values of parameters a, b € R. Therefore, we construct
usual center manifold at origin for fixed values of a, b in the form:

y = h(z) = c2? + 32 + eyt + O(2°),

where ¢y = ¢; = 0 so that the center manifold intersects the origin and lies
tangent to the center subspace spanned by (1,0)T. We substitute y = h(z)
into to obtain:

2ca(ca + a)zt + O(2®) = (b— e2)2? — 323 + (2 — ed)z* + O(2d),

which implies that coa = b, c3 = 0 and ¢4 = b — 2b(a + b) and leads to the
center manifold having the form:

y = bx? 4 [b— 2b(a + b)]z* + O(2). (4)
We find the reduced equation by substituting into :
i = (a+b)z®+ (b +b—2b(a+ b))z’ + O(x5). (5)

We note that the origin is asymptotically stable for a + b < 0 and unstable
for a + b > 0, as required.



(i) : If a +b = 0, then the stability is determined by going to order
O(z®) in (5). In this case, if b2 + b > 0, which suggests that b > 0 or
b < —1, then the origin is unstable, whilst if b2 +b < 0, which suggests that
b € (—1,0), then the origin is asymptotically stable. However, if b2 + b = 0,
such that b = {—1, 0}, then we need to go to higher order in z to determine
the stability. The phase portraits of system — are shown in the case

a+b=0in Fig. 1.

Figure 1: Phase portraits of (I)-(2) for (a,b)=(0.5,-0.5) and (-3, 3) together with

the center manifold () (shown in blue).

Q2 (topological equivalence) Consider systems
Ty = -1, T = —T2,

and
T = —x1, Io= —2x9.

The solution of @ is given by
z1(t) = 21(0)e™", z2(t) = 22(0)e ",
while one of is



The homeomorphism h(x1, z2) between solutions of @ and is given by

=[]
Therefore, systems @ and (|7]) are topologically equivalent, but not smoothly
equivalent, because h~!(Z1, Z2) involves a square root operation, which is
not differentiable at origin. Systems @ and are also not orbitally equiv-
alent, because there is no time rescaling ¢ = ut which transforms system
into ([7).

Q3 (centre manifold to the third order) Consider the system
T = pxr+y-+sinz, (8)
y = z-y (9)
The fixed points of it are solutions of system:
y = =
—(p+ 1)z = sinz, (10)

implying that origin is a fixed point for all values of 4 € R and that a
bifurcation occurs at u = —2, creating new fixed points which satisfy .
Additionally, (10) predicts that countably infinite fixed points bifurcate at
= —1and x = nm for n € Z.

The Jacobian at origin for 4 = —2 is given by

-1 1
pron=[11,]
and has eigenvalues given by:
Al =—2, A =0,

and eigenvectors
v = (-1, 1)T, vy = (1, 1)T.
The associated linear subspaces are:

E* =span{(—1, 1)7}, B¢ = span{(1, 1)T}.

To determine the type of bifurcation occurring for © = —2 it is enough in
this problem to calculate the center manifold at the origin for this parameter
value:

y = h(z) =z + agx? + azx® + O(x?), (11)



where a9 = 0 and a7 = 1, so that the center manifold intersects with E°
at the origin and lies tangent to it. Substitution of (11)) into system —@
combined with Taylor expansion of sinz at the origin results into:

1
—ayx? — a3z + O(z?) = ag® + (a3 — 6 + 2a)z® 4+ O(z?),
which suggests that as = 0 and ag = 1/12, so that the center manifold at
= —2 is given by:

1
y=u1x+ ﬁxB + O(z%). (12)

Substituting into gives the reduced evolution on the center manifold:

T = —13% (13)
suggesting that one has a supercritical pitchfork bifurcation at p = 2. The
phase-plane portraits of —@ before the bifurcation, at the bifurcation,
and after the bifurcation are shown in Fig. 2. To obtain them one needs to
calculate the extended center manifolds.

Figure 2: Phase portraits of -@D for left: pu = —2.1, middle: p = —2.0, right:
= —1.9. Fixed points are shown as red dots and the extended center manifolds
are shown in blue.



Q4 (pitchfork bifurcation) We consider the equation & = f(x, 1) where
r € R and f is at least class C3(R). For a pitchfork bifurcation to occur at
z = pu = 0, we demand that:

f:):(oa 0) =0, (15)
fM(O’O) - 0’ (16)

whereby the latter-most condition is a necessary condition that there is
another curve crossing (z, ) = (0, 0). As such, we can separate the two
branches in f(z, ) and express it as:

f(:v,,u) = xg(x’ M)»

where x = 0 is one brunch and it is assumed that ¢g(0, u) # 0. Next we
calculate:

f2(0, 1) = g(0, p) + 292(0, 1) = g(0, p), (17)
which implies from — that

9(07 0) =0, gu(ov O) # 0.

Considering a pitchfork bifurcation in the x — u plane, we note that a pitch-
fork bifurcation occurs if:

d’u
! - el — .
M (x)|:c:0 = 07 A2 |z70 7é 0

Using the chain rule we find:

! _ gx(0,0) _ fxaz(oao)
PO 00 T T R0 -

where we used in the last equality . Proceeding similarly we get

_gmm(070) _ _fmrx(oao)
9(0,0) f2u(0,0)

Combining — with we get the following conditions specific for
the pitchfork bifurcation:

0# pu"(0) =

(19)

fu(0,0) = fxm(ov O) =0,
fraz(0,0) # 0, fo, #0.



Q5 (Hopf bifurcation) We study the Brusselator
i = 1—(b+1)z+ 22y, (20)
§ o= by, (21)

The only fixed point of this system is (z,y) = (1,b). Linearising around it,

we find
b-1 1
pro.0 ="t L.

so that the corresponding eigenvalues are:

b2 1)
+ = )
2

which suggests that there is a Hopf bifurcation at b, = 2 when AL are pure
imaginary.

We want to rewrite system — into a form such that the fixed point
is at the origin and the bifurcation occurs when the bifurcation parameter
is zero. To this end, we rescale z =x — 1, g =y — b, and § = (b—2)/2 and
transform — to obtain (upon dropping the tilde symbols):

i = (2604 Dz +y+2zy+ (28 + 2)z% + 2%y, (22)
j = —(28+2)x—y—2zy— (26+2)2”° — 2%y, (23)

In this case, the eigenvalues at the origin are:

AL(B) =B Eiv1— 52,

with the corresponding eigenvectors:

[1_1/2]&[3/2}, (24)

when calculated at the bifurcation point 3 = 0.
We now employ the Hopf theorem. Close to the bifurcation for 8 < 1,
we can transform the dynamical system — into the polar form:

i = dfr + ar, (25)
0 =w+0(r?), (26)

where

d
ReAtlg=0 =1, w=ImA{(0)=1,

=5



and Lyapunov coefficient

1

16 {(fuuu+fuvv+guuv +gvvv)w+fuv (fuu+fvv) Guv (guu+gvv)_fuuguu+fvvgvv} | (u,v)=(0,0)

(27)
for new dependent variables v and v, which are a linear transformation of x
and y that transform — considered with 8 = into the form:

v = —v+ f(u,v), (28)
= u+g(u,v). (29)
For that create a transformation matrix (whose columns are eigenvectors
(24)):
| -1/2 1)2
e[
with
1 |01
P= [ 2 1|
so that

3] (s

This transformation implies that

HEEIHRE™

[ —2x —y — 2zy — 222 — 22y
= |yt 2uy+ 222 + 2%y (using (22)-(23) with 8 = 0)

_ ut vt 1 2_2 2 )
_ v +2 2_ 22 4(U uv +2U )U (usll’lg _)

(u? — 2uv + v?)u

I

+
oS
v|S
+
[ =

Hence, we obtain that system — transform for # = 0 into —

with: ) ) ) 5
flusw) = —gluv) = =5+ T = TE 4 LT

2
E) T T



Calculating Lyapunov coefficient ¢ using formula gives

3
16’

a = —

so that the Hopf normal form of the system is:

= B — — 2
7= fr T (32)
with the leading order period
2
T~ i 2.
w

We note from that » = 0 is asymptotically stable for 3 < 0, but becomes
unstable for 4 > 0, whilst introducing a new asymptotically stable radius at
r = 4,/0/3, suggesting that the Hopf bifurcation is supercritical.



