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Q1 (center manifold to fourth order) We consider the system

ẋ = xy + ax3 + xy2, (1)
ẏ = −y + bx2 + x2y, (2)

(i) : The linearisation at origin gives:

Df(0, 0) =
[

0 0
0 −1

]
(3)

and is independent of values of parameters a, b ∈ R . Therefore, we construct
usual center manifold at origin for fixed values of a, b in the form:

y = h(x) = c2x
2 + c3x

3 + c4x
4 +O(x5),

where c0 = c1 = 0 so that the center manifold intersects the origin and lies
tangent to the center subspace spanned by (1, 0)T . We substitute y = h(x)
into (1) to obtain:

2c2(c2 + a)x4 +O(x5) = (b− c2)x2 − c3x3 + (c2− c4)x4 +O(x5),

which implies that c2 = b, c3 = 0 and c4 = b − 2b(a + b) and leads to the
center manifold having the form:

y = bx2 + [b− 2b(a+ b)]x4 +O(x5). (4)

We find the reduced equation by substituting (4) into (1):

ẋ = (a+ b)x3 + (b2 + b− 2b(a+ b))x5 +O(x6). (5)

We note that the origin is asymptotically stable for a+ b < 0 and unstable
for a+ b > 0, as required.
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(ii) : If a + b = 0, then the stability is determined by going to order
O(x5) in (5). In this case, if b2 + b > 0, which suggests that b > 0 or
b < −1, then the origin is unstable, whilst if b2 + b < 0, which suggests that
b ∈ (−1, 0), then the origin is asymptotically stable. However, if b2 + b = 0,
such that b = {−1, 0}, then we need to go to higher order in x to determine
the stability. The phase portraits of system (1)-(2) are shown in the case
a+ b = 0 in Fig. 1.

Figure 1: Phase portraits of (1)-(2) for (a, b)=(0.5, -0.5) and (-3, 3) together with
the center manifold (4) (shown in blue).

Q2 (topological equivalence) Consider systems

ẋ1 = −x1, ẋ2 = −x2, (6)

and
ẋ1 = −x1, ẋ2 = −2x2. (7)

The solution of (6) is given by

x1(t) = x1(0)e−t, x2(t) = x2(0)e−t,

while one of (7) is

x̃1(t) = x̃1(0)e−t, x̃2(t) = x̃2(0)e−2t,
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The homeomorphism h(x1, x2) between solutions of (6) and (7) is given by[
x̃1

x̃2

]
= h(x̃1, x̃2) =

[
x1

x2
2

]
.

Therefore, systems (6) and (7) are topologically equivalent, but not smoothly
equivalent, because h−1(x̃1, x̃2) involves a square root operation, which is
not differentiable at origin. Systems (6) and (7) are also not orbitally equiv-
alent, because there is no time rescaling t̃ = µt which transforms system (6)
into (7).

Q3 (centre manifold to the third order) Consider the system

ẋ = µx+ y + sinx, (8)
ẏ = x− y. (9)

The fixed points of it are solutions of system:

y = x,

−(µ+ 1)x = sinx, (10)

implying that origin is a fixed point for all values of µ ∈ R and that a
bifurcation occurs at µ = −2, creating new fixed points which satisfy (10).
Additionally, (10) predicts that countably infinite fixed points bifurcate at
µ = −1 and x = nπ for n ∈ Z.

The Jacobian at origin for µ = −2 is given by

Df(0, 0) =
[
−1 1
1 −1

]
.

and has eigenvalues given by:

λ1 = −2, λ2 = 0,

and eigenvectors
v1 = (−1, 1)T , v2 = (1, 1)T .

The associated linear subspaces are:

Es = span{(−1, 1)T }, Ec = span{(1, 1)T }.

To determine the type of bifurcation occurring for µ = −2 it is enough in
this problem to calculate the center manifold at the origin for this parameter
value:

y = h(x) = x+ a2x
2 + a3x

3 +O(x4), (11)
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where a0 = 0 and a1 = 1, so that the center manifold intersects with Ec

at the origin and lies tangent to it. Substitution of (11) into system (8)-(9)
combined with Taylor expansion of sinx at the origin results into:

−a2x
2 − a3x

3 +O(x4) = a2x
2 + (a3 −

1
6

+ 2a2)x3 +O(x4),

which suggests that a2 = 0 and a3 = 1/12, so that the center manifold at
µ = −2 is given by:

y = x+
1
12
x3 +O(x4). (12)

Substituting (12) into (8) gives the reduced evolution on the center manifold:

ẋ = − 1
12
x3, (13)

suggesting that one has a supercritical pitchfork bifurcation at µ = 2. The
phase-plane portraits of (8)-(9) before the bifurcation, at the bifurcation,
and after the bifurcation are shown in Fig. 2. To obtain them one needs to
calculate the extended center manifolds.

Figure 2: Phase portraits of (8)-(9) for left: µ = −2.1, middle: µ = −2.0, right:
µ = −1.9. Fixed points are shown as red dots and the extended center manifolds
are shown in blue.
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Q4 (pitchfork bifurcation) We consider the equation ẋ = f(x, µ) where
x ∈ R and f is at least class C3(R ). For a pitchfork bifurcation to occur at
x = µ = 0, we demand that:

f(0, 0) = 0, (14)
fx(0, 0) = 0, (15)
fµ(0, 0) = 0, (16)

whereby the latter-most condition is a necessary condition that there is
another curve crossing (x, µ) = (0, 0). As such, we can separate the two
branches in f(x, µ) and express it as:

f(x, µ) = xg(x, µ),

where x = 0 is one brunch and it is assumed that g(0, µ) 6= 0. Next we
calculate:

fx(0, µ) = g(0, µ) + xgx(0, µ) = g(0, µ), (17)

which implies from (15)-(16) that

g(0, 0) = 0, gµ(0, 0) 6= 0.

Considering a pitchfork bifurcation in the x−µ plane, we note that a pitch-
fork bifurcation occurs if:

µ′(x)|x=0 = 0,
d2µ

dx2
|x=0 6= 0.

Using the chain rule we find:

0 = µ′(0) = −gx(0, 0)
gµ(0, 0)

= −fxx(0, 0)
fxµ(0, 0)

, (18)

where we used in the last equality (17). Proceeding similarly we get

0 6= µ′′(0) = −gxx(0, 0)
gµ(0, 0)

= −fxxx(0, 0)
fxµ(0, 0)

. (19)

Combining (18)-(19) with (16) we get the following conditions specific for
the pitchfork bifurcation:

fµ(0, 0) = fxx(0, 0) = 0,
fxxx(0, 0) 6= 0, fxµ 6= 0.
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Q5 (Hopf bifurcation) We study the Brusselator

ẋ = 1− (b+ 1)x+ x2y, (20)
ẏ = bx− x2y, (21)

The only fixed point of this system is (x, y) = (1, b). Linearising around it,
we find

Df(0, 0) =
[
b− 1 1
−b −1

]
,

so that the corresponding eigenvalues are:

λ± =
b− 2±

√
b(b− 4)

2
,

which suggests that there is a Hopf bifurcation at bc = 2 when λ± are pure
imaginary.

We want to rewrite system (20)-(21) into a form such that the fixed point
is at the origin and the bifurcation occurs when the bifurcation parameter
is zero. To this end, we rescale x̃ = x− 1, ỹ = y − b, and β = (b− 2)/2 and
transform (20)-(21) to obtain (upon dropping the tilde symbols):

ẋ = (2β + 1)x+ y + 2xy + (2β + 2)x2 + x2y, (22)
ẏ = −(2β + 2)x− y − 2xy − (2β + 2)x2 − x2y, (23)

In this case, the eigenvalues at the origin are:

λ±(β) = β ± i
√

1− β2,

with the corresponding eigenvectors:[
−1/2
1

]
± i
[

1/2
0

]
, (24)

when calculated at the bifurcation point β = 0.
We now employ the Hopf theorem. Close to the bifurcation for β � 1,

we can transform the dynamical system (22)-(23) into the polar form:

ṙ = dβr + ar3, (25)
θ̇ = ω +O(r2), (26)

where
d =

d

dβ
Reλ±|β=0 = 1, ω = Imλ+(0) = 1,
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and Lyapunov coefficient

a =
1

16w
{(fuuu+fuvv+guuv+gvvv)w+fuv(fuu+fvv)−guv(guu+gvv)−fuuguu+fvvgvv}|(u,v)=(0,0)

(27)
for new dependent variables u and v, which are a linear transformation of x
and y that transform (22)-(23) considered with β = into the form:

u̇ = −v + f(u, v), (28)
v̇ = u+ g(u, v). (29)

For that create a transformation matrix (whose columns are eigenvectors
(24)):

P =
[
−1/2 1/2
1 0

]
,

with

P−1 =
[

0 1
2 1

]
,

so that [
u
v

]
= P−1

[
x
y

]
This transformation implies that

x = −u
2

+
ωv

2(1 + β)
, (30)

y = u, (31)

and[
u̇
v̇

]
=

[
0 1
2 1

] [
ẋ
ẏ

]
=
[
ẏ
2ẋ+ ẏ

]
=

[
−2x− y − 2xy − 2x2 − x2y
y + 2xy + 2x2 + x2y

]
(using (22)-(23) with β = 0)

=

[
−v + u2

2 −
v2

2 −
1
4(u2 − 2uv + v2)u

u+ v2

2 −
u2

2 + 1
4(u2 − 2uv + v2)u

]
(using (30)-(31)) .

Hence, we obtain that system (22)-(23) transform for β = 0 into (28)-(29)
with:

f(u, v) = −g(u, v) = −v
2

2
+
u2

2
− v2u

4
+
vu2

2
− u3

4
.
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Calculating Lyapunov coefficient a using formula (27) gives

a = − 3
16
,

so that the Hopf normal form of the system is:

ṙ = βr − 3
16
r3, (32)

with the leading order period

T ∼ 2π
ω

= 2π.

We note from (32) that r = 0 is asymptotically stable for β ≤ 0, but becomes
unstable for β > 0, whilst introducing a new asymptotically stable radius at
r = 4

√
β/3, suggesting that the Hopf bifurcation is supercritical.
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