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5 Introduction to chaotic dynamical systems

The material of this chapter is covered in the following books:

• L. Perko, Differential Equations and Dynamical Systems (Second edi-
tion, Springer, 1996). Paragraphs 4.8–4.9.

• Guckenheimer and Holmes, Nonlinear Oscillations, Dynamical Sys-
tems (Springer, 1983). Paragraphs 4.5, 5.1–5.3.

• Y. A. Kuznetsov, Elements of Applied Bifurcation Theory (Second
edition, Springer, 1998). Paragraphs 1.1.4, 1.3, 6.1, 6.4.1.

We saw in the example of the logistic map that chaotic dynamics (which
arises for µ > µ∞) is characterised by two properties of its solutions : sensi-
tivity to the initial conditions and aperiodic behaviour. In this chapter, we
will give a unified mathematical meaning for these notions by considering
special examples of chaotic dynamical systems.

5.1 Symbolic dynamics

Symbolic dynamics is a special example of discrete dynamical systems, whose
phase space is given by the set of bi-infinite sequences of 0 and 1 of the form

s = {..., sn, ..., s−1|s0s1...sn...} with n ∈ Z and sn ∈ {0, 1}.

A natural distance between any two elements s, s′ ∈ Σ is given by

|s− s′| = dist(s, s′) =
∑
n∈Z

|sn − s′n|
2n

<∞.
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It is easy to deduce that

dist(s, s′) <
1

2n−1
iff si = s′i for all i ∈ {−n,−n+ 1, ..., 0, ..., n− 1, n}. (1)

Consider the Bernoulli shift map σ acting in the phase space Σ by the
following rule:

s = {...s−2s−1|s0s1...} ∈ Σ =⇒ σ(s) = {...s−2s1s0|s1s2...} ∈ Σ. (2)

In other words, s′ = σ(s) implies s′i = si+1.
The dynamical system produced by the shift map σ in the phase of bi-

infinite sequences Σ is called symbolic dynamics. The following theorem
provides a characterisation of typical orbits of map σ.

Theorem 1. (i) : σ has a countable infinity of periodic orbits with an arbi-
trary period N ∈ N .

(ii) : σ has an uncountable infinity of non-periodic orbits.
(iii) : σ has a dense orbit in Σ.
(iv) : The dynamics of σ is sensitive to the initial conditions. Namely,

for any arbitrary close two initial points s, s′ ∈ Σ there exists n ∈ N such
that

|σn(s)− σn(s′)| ≥ 1. (3)

Proof: (i) : We can construct a periodic orbit of σ having an arbitrary
period N ∈ N by first composing N digits of 0 and 1 and then repeating
them periodically. An example of a such period-4 orbit is given by

{1010|1010|...}.

(ii) : We can map any s ∈ Σ bijectively to a binary number s ∈ (0, 1) of the
form:

s̃ = 0.s0s1s−1s2s−2...

By taking the preimage under such map of a number s̃ ∈ R \Q, where Q is
the set of rational numbers, one obtains the bi-infinity sequence s ∈ Σ such
that σn(s) never repeats itself. Hence, s̃ ∈ R\Q corresponds to non-periodic
orbits of σ. As the set R\Q is uncountable we can construct an uncountable
infinity of such non-periodic orbits.

(iii) : First, we construct s0 ∈ Σ as a concatenation over N ∈ N of all
2N binary blocks of size N . Then for any s ∈ Σ and any k ∈ Z there exists
n ∈ Z such that

|σn(s0)− s| < 1
2k−1

. (4)
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Indeed, by construction of s0 one can always find a shift n ∈ Z such that

[σn(s0)]i = si for all i with |i| ≤ k.

The last property then implies (4). Hence, we have shown that for any s ∈ Σ
there exists an arbitrary closed to it point of orbit σn(s0), i.e. s0 generates
a dense orbit in Σ.

(iv) : For any k ∈ N consider s, s′ ∈ Σ such that dist(s, s′) < 2k−1. By
(1) sequences s and s′ have the same central blocks between registers −k
and k. Additionally, there exists N ≥ k + 1 such that [σN (s)]0 6= [σN (s′)]0.
But this implies (again using (1)) that d(σN (s), σN (s′)) ≥ 1.�

By analysing properties (i) − (iv) of the shift map σ stated in Theo-
rem 1 we can introduce a general notion of the chaotic set of a (discrete or
continuous) dynamical system.

Definition 5.1. Let f be a bijective map defined on a phase space M . Let
Λ be an invariant compact subset of M . Λ is chaotic if the following two
properties hold:
(i) : f has sensitivity to the initial data belonging to Λ.
(ii) : f is topologically transitive in Λ, i.e. for all open sets U, V ∈ Λ there
exists n ∈ Z such that fn(U) ∩ V 6= ∅.

Remark 5.1. It is easy to show that if Λ has a dense orbit in M then f is
topologically transitive.

Remark 5.2. By Theorem 1 and the last remark the shift map σ acting in
Σ has the chaotic set Λ = Σ.

In the next paragraph, we will present an example of chaotic sets appear-
ing in the special non-autonomous two-dimensional continuous dynamical
systems.

5.2 Chaos in periodically perturbed planar systems

Melnikov’s method1 is one among only few existing methods capable for
identification of chaotic sets and analytical investigation of their structure.
In this paragraph, we first present Melnikov method for planar autonomous
Hamiltonian systems and then extend it to the special non-autonomous ones
with chaotic sets the dynamics in which, interestingly, turns out to be iso-
morphic to the symbolic dynamics discussed in the previous paragraph.

1Melnikov, V. On the stability of the center for time periodic perturbations, Trans.
Moscow Math. Soc. 12:1-57, 1963.
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5.2.1 Melnikov’s method for planar autonomous systems

Consider system

ẋ = f(x, ε) with x ∈ R2 and ε ≥ 0. (5)

In the extended phase-space (x, ε), it can be written as

ẋ = f(x, ε),
ε̇ = 0. (6)

Assume that system (5) has a homoclinic orbit x̄0(t) for ε = 0, i.e. the
solution x̄0(t) such that

lim
t→±∞

x̄0(t) = x0,

where x0 is a saddle point. We assume also that for sufficiently small ε > 0
there exists a curve of perturbed saddles xε and denote the corresponding
global stable and unstable manifolds by W u(xε) and W s(xε). Let us denote
also the corresponding unions of these manifolds in the extended phase-space
by Wu and Ws, respectively. We would like to find an analytical condition
for the extended manifoldsWu andWs to intersect transversely. This means
that two extended manifolds intersect only along the homoclinic orbit x0(t),
i.e. Wu ∩Ws = x0(t), and then split for ε > 0 (see Fig 1). The transversal
intersection also implies that W u(x0) = W s(x0) and for all t ∈ R the vector
ξ(t) = ˙̄x(t) is tangent both to Wu and Ws, so that

T(x̄0(t), 0)Ws ∩ T(x̄0(t), 0)Wu = span{ξ(t)}.

Because of that, u(t) = (ξ(t), 0)T is a unique bounded for all t ∈ R solution
to the linearisation of system (6) at (x̄0(t), 0)T :

u̇ = fx(x0(t), 0)u+ fε(x0(t), 0)ε,
ε̇ = 0. (7)

By introducing the matrix-valued function

A(t) = fx(x0(t), 0),

one observes also that ξ(t) is a unique bounded solution to the so-called
variational equation u̇ = A(t)u.

One can also show that there exists a unique bounded solution η(t) to
the adjoint variational equation:

v̇ = −AT (t)v, v ∈ Rn. (8)
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Figure 1: Transversal intersection of the extended global stable Ws and unstable
Wu manifolds.

Moreover, by calculating

d

dt
< η, ξ > = < η̇, ξ > + < η, ξ̇ >

= − < AT η, ξ > + < η, Aξ >= − < η, Aξ > + < η, Aξ >= 0,

one obtains that
< η, ξ >= const = 0, (9)

where we have used that ξ(t) = ˙̄x(t) → 0 as t → ±∞. Hence, we deduced
that at any point x̄0(t) of the unperturbed homoclinic orbit vectors ξ(t) and
η(t) span the tangential and normal directions to it, respectively (see Fig. 2).
Now, we can deduce the condition suggested by Melnikov for checking that
manifolds Ws and Wu intersect transversely. Suppose the opposite, then
there should exists another solution ξ1(t) 6= ξ(t) to system (7) which is
tangential to both manifolds Ws and Wu.

Let us take the scalar product of η(t) and first equation in (7) considered
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Figure 2: Plot of the homoclinic orbit x̄0(t) and perturbed split manifolds W s(xε)
and Wu(xε) for 0 < ε� 1.

with u(t) = ξ1(t):

ε

∫ ∞
−∞

< η(t), fε(x̄0(t), 0) > dt =
∫ ∞
−∞

< η(t), ξ̇1(t)−A(t)ξ1(t) > dt

= < η(t), ξ1(t) > |+∞−∞ −
∫ ∞
−∞

< η̇(t) +AT (t)η(t), ξ1(t) > dt

= 0, (10)

where we used that
< η(t), ξ1(t) > (±∞) = 0,

because η(t) is bounded and ξ1(t)→ 0 as t→ ±∞.
We conclude from (10) that the integral

M =
∫ ∞
−∞

< η(t), fε(x̄0(t), 0) > dt = 0 (11)

necessarily if Ws and Wu intersect non-transversely. The integral M is
called Melnikov integral.

For two-dimensional systems (5) with x = (x1, x2)T function η(t) can
be found explicitly and Melnikov integral can be written solely in terms of
function f(x1, x2, ε) = (f1(x1, x2, eps), f2(x1, x2, ε)T .

Lemma 1. Integral (11) can be written as

M =
∫ +∞

−∞
exp

[
−
∫ t

0

(
∂f1

∂x1
+
∂f2

∂x2

)
dτ

](
f1
∂f2

∂ε
− f2

∂f1

∂ε

)
dt. (12)
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Moreover, consider the special case when (5) is a perturbation of a Hamil-
tonian system, i.e.

ẋ = f(x) + εg(x), (13)

with f(x1, x2) = (Hx1 ,−Hx2)T and function H(u, v) ∈ C2(R2, R) being the
first integral of the unperturbed system:

ẋ1 =
∂H

∂x1
, ẋ2 = −∂H

∂x2
.

Then for (13) formula (12) can be reduced further to

M =
∫ +∞

−∞
f(x̄0(t)) ∧ g(x̄0(t)) dt, (14)

where the wedge product of two vectors f = (f1, f2)T and g = (g1, g2)T is
defined by

f ∧ g = f1g2 − f2g1 ∈ R.

Proof: To prove (12) we use

ẋ0(t) =
[
f1(x0(t), 0)
f2(x0(t), 0)

]
and (9) to write

η(t) = ϕ(t)
[
−f2(x0(t), 0)
f1(x0(t), 0)

]
, (15)

with ϕ(t) : R → R. To determine function ϕ(t) we use that η(t) solves the
adjoint variational equation (8), i.e.

η̇ = −
[
f1,x f2,x

f1,y f2,y

]
η.

By substituting (15) into the last equation we deduce that ϕ(t) solves

ϕ̇(t) = −(f1,x + f2,x)ϕ(t).

Solving the last equation one obtains

ϕ(t) = exp
[
−
∫ t

0

(
∂f1

∂x1
+
∂f2

∂x2

)
dτ

]
.

Now, substitution of the formula for ϕ(t) into (15) and then into (11) trans-
forms the latter into (12).
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In the case of the perturbed Hamiltonian system (13), one can explicitly
calculate that

∂f1

∂x1
+
∂f2

∂x2
=

∂H

∂x∂y
− ∂H

∂y∂x
= 0,

∂f1

∂ε
= g1,

∂f2

∂ε
= g2.

Using the latter expressions we reduce (12) to a simpler formula (14).�
We summarise that if the invariant manifolds Ws and Wu to the ex-

tended system (6), which has the homoclinic orbit x̄0(t) for ε = 0, intersect
tangentially then the Melnikov integral (12) is necessarily zero. In this
case, there exist special right-hand sides f(x, ε) for which the perturbed
homoclinic orbit x̄ε(t) persists for all sufficiently small ε and, therefore,
W s

ε (xε) = W u
ε (xε).

The following theorem provides sufficient conditions for this to be true
in the case of the perturbed Hamiltonian systems.

Theorem 2. Consider system

ẋ = f(x) + εg(x, µ) with x ∈ R2, ε > 0, µ ∈ R, (16)

and f(x1, x2) = (Hx1 ,−Hx2)T for some function H(x1, x2) ∈ C2(R2, R).
Suppose that for ε = 0 there exists a homoclinic orbit x̄0(t) of (16). Define
according to (14) the Melnikov integral:

M(µ) =
∫ +∞

−∞
f(x̄0(t)) ∧ g(x̄0(t), µ) dt. (17)

If there exists µ0 ∈ R with

M(µ0) = 0 and M ′(µ0) 6= 0, (18)

then for any sufficiently small ε > 0 there exists µε = µ0 + O(ε) such that,
system (16) considered with parameters (µε, ε) has a unique homoclinic orbit
x̄ε(t), such that

dist(x̄0(t), x̄ε(t))→ 0 as ε→ 0.

5.2.2 Melnikov’s method for periodically perturbed
planar systems

Consider system
ẋ = f(x) + εg(x, t) with ε ≥ 0, (19)
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f(x1, x2) = (Hx1 ,−Hx2)T and g(x1, x2, t+T ) = g(x1, x2, t) for x = (x1, x2)T ∈
R2 and t ∈ S1. Here torus S1 is the period interval [0, T ) of the perturbation
function g(x, t) with the end points 0 and T being identified.

As in previous paragraph, we assume that the unperturbed Hamiltonian
system

ẋ = f(x)

has a homoclinic orbit x̄0(t) connecting the saddle point x0 with itself. But
now system (19) is rather non-autonomous. Using the implicit function
theorem one can show that for sufficiently small ε > 0 the extended system

ẋ = f(x) + εg(x, t),
ṫ = 0, (20)

will have a unique periodic solution γε(t) = (xt
ε, t), such that

xt
ε = x0 + xt

1,ε with |xt
1,ε| ≤ Cε for t ∈ [0, T ).

Let us define for each t ∈ [0, T ) the Poincaré map P t0
ε : Σt0 → Σt0 with the

corresponding transversal section Σt0 to the orbits of (20):

Σt0 = {(x, t)| t = t0 ∈ [0, T )} ⊂ R2 × S1.

Note that the periodic solution γε(t) induces the fixed point xt0
ε ∈ Σt0 of

P t0
ε . Next, we define the global stable Ws

ε (γε(t)) and unstable Ws
ε (γε(t))

manifolds as unions of points (x, tin) in the extended phase-space R2 × S1

such that
dist

(
ϕt

ε(x, tin), xt
ε

)
→ 0

as t → +∞ and t → −∞, respectively. Here, ϕt
ε(x, tin) ∈ R2 denotes the

solution to system (19) considered with the initial data (x, tin). Correspond-
ingly, let us denote by

W u,s
ε (xt0

ε ) =Wu,s
ε (γε(t)) ∩ Σt0

the unstable/stable manifolds at the fixed point xt0
ε of the map P t0

ε (see
Fig. 3).

For each fixed ε > 0 and t0 ∈ [0, T ), these two manifolds can intersect
or be disjoint depending on the particular perturbation g(x, t) considered
in (19). The Melnikov’s method presented here provides a simple analytical
criterion whether W u

ε (xt0
ε ) ∩W s

ε (xt0
ε ) = ∅ for some ε > 0 and t0 ∈ [0, T ) or

not.
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Figure 3: Sketch of the invariant manifolds Wu
ε (xt0

ε ) and W s
ε (xt0

ε ) in the section
Σt0 of the Poincaré map P t0

ε .

First, observe that

dist (Ws,u
ε (γε(t)), x̄0(t))→ 0 as ε→ 0

uniformly in the extended phase-space R2 × S1 provided function g(x, t) :
R2×S1 → R is sufficiently smooth. Correspondingly, for a fixed x̄0(0) there
are two points xs,u

ε ∈W u,s
ε (xt0

ε ) such that,

|xs,u
ε − x̄0| = O(ε) as ε→ 0.

Consequently, two solutions ϕt
ε(x

s
ε, t0) to (19) generated by points xs,u

ε can
be expanded uniformly in time as

ϕt
ε(x

s
ε, t0) = x̄0(t− t0) + εxs

1(t, t0) +O(ε2) for t ∈ (t0, +∞),
ϕt

ε(x
u
ε , t0) = x̄0(t− t0) + εxu

1(t, t0) +O(ε2) for t ∈ (−∞, t0), (21)

with xs,u
1 (t, t0) being solutions to the linearized equations

ẋs
1(t, t0) = fx(x̄0(t− t0))xs

1(t, t0) + g(x̄0(t− t0), t) for t ≥ t0, (22)
ẋu

1(t, t0) = fx(x̄0(t− t0))xu
1(t, t0) + g(x̄0(t− t0), t) for t ≤ t0.

Next, let us introduce the distance vector (see Fig. 3)

d(t0) = xu
ε − xs

ε.
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From (21) estimated at t = t0 one obtains the corresponding expansion

d(t0) = ε
f(x̄0(0)) ∧ (xu

1(t0, t0)− xs
1(t0, t0))

|f(x̄0(0))|
+O(ε2). (23)

Note that in the above formula f(x̄0(0)) ∧ (xu
1(t0, t0) − xs

1(t0, t0)) is the
projection of xu

1(t0, t0)− xs
1(t0, t0) onto the normal

f⊥(x̄0(0)) = (−f2(x̄0(0)), f1(x̄0(0)))T

to the homoclinic orbit x̄0(t) at the point x̄0(0).
Finally, let us define the Melnikov integral for this problem as

M(t0) =
∫ +∞

−∞
f(x̄0(t− t0)) ∧ g(x̄0(t− t0), t) dt. (24)

We can now state and prove the following theorem.

Theorem 3. If function M(t) has a simple zero at t = t0 then W u
ε (xt0

ε ) and
W s

ε (xt0
ε ) intersect transversely for all sufficiently small ε > 0. If M(t) 6= 0

for all t ∈ [0, T ) then W u
ε (xt0

ε )∩W s
ε (xt0

ε ) = ∅ for all sufficiently small ε > 0
and t ∈ [0, T ).

Proof: Let us introduce functions

∆s,u(t, t0) = f(x̄0(t− t0)) ∧ xs,u
1 (t, t0),

∆(t, t0) = ∆u(t, t0)−∆s(t, t0).

Due to (23) one has

d(t0) = ε
∆(t0, t0)
|f(x̄0(0))|

+O(ε2). (25)

Calculate the derivative,

d

dt
∆s(t, t0) = fx(x̄0(t−t0)) ˙̄x0(t−t0)∧xs

1(t, t0)+f(x̄0(t−t0))∧
(
∂

∂t
xs

1(t, t0)
)
.

Substitution of ˙̄x0(t − t0) = f(x̄0(t − t0)) and equation (22) into the last
relation gives

d

dt
∆s(t, t0) = tr fx(x̄0(t− t0))∆s(t, t0)+f(x̄0(t− t0))∧g(x̄0(t− t0), t) (26)
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Using the fact that the unperturbed system is Hamiltonian (f(x1, x2) =
(Hx1 ,−Hx2)T ) one calculates that tr fx(x̄0(t− t0)) = 0 for all t ∈ R. There-
fore, (26) reduces to

d

dt
∆s(t, t0) = f(x̄0(t− t0)) ∧ g(x̄0(t− t0), t).

Integration of the last expression between t0 and +∞ gives

∆s(+∞, t0)−∆s(t0, t0) =
∫ ∞

t0

f(x̄0(t− t0)) ∧ g(x̄0(t− t0), t) dt, (27)

where
∆s(+∞, t0) = lim

t→+∞
f(x̄0(t− t0)) ∧ xs

1(t, t0).

Note that ∆s(+∞, t0) = 0, because xs
1(t, t0) is bounded for all t ≥ t0 and

lim
t→+∞

f(x̄0(t− t0)) = lim
t→+∞

˙̄x0(t− t0) = 0

by definition of the homoclinic orbit x̄0(t).
Therefore, (27) implies that

∆s(t0, t0) = −
∫ ∞

t0

f(x̄0(t− t0)) ∧ g(x̄0(t− t0), t) dt. (28)

Similar arguments give that

∆u(t0, t0) =
∫ t0

−∞
f(x̄0(t− t0)) ∧ g(x̄0(t− t0), t) dt, (29)

Through substitution of (28)-(29) into (25) we conclude that

d(t0) = ε
M(t0)
|f(x̄0(0))|

+O(ε2) (30)

with Melnikov integral M(t0) defined in (24).
Now, in order to prove the statements of the theorem we observe that

for sufficiently small ε > 0

signM(t0) = sign d(t0).

Hence, if M(t0) has a simple zero at t0 ∈ [0, T ) than function d(t) has it
also at t0. Moreover, a simple zero of d(t) means that manifolds W u

ε (xt0
ε )

and W s
ε (xt0

ε ) intersect transversely. On contrary, if M(t) stays positive or
negative for all t ∈ [0, T ) manifolds W u

ε (xt0
ε ) and W s

ε (xt0
ε ) are disjoint.�

12



Remark 5.3. By applying the change of variables t → t + t0 in (24) the
Melnikov integral takes a more suitable for practical calculations form:

M(t0) =
∫ +∞

−∞
f(x̄0(t)) ∧ g(x̄0(t), t+ t0) dt. (31)

Figure 4: Transversal intersection of the invariant manifolds Wu
ε (xt0

ε ) and W s
ε (xt0

ε )
in the section Σt0 of the Poincaré map P t0

ε (left) and intersection of domain D and
P 5(D) depicted in red (right).

The analytical statements involving the Melnikov integral in the previous
Theorem have a direct implication about existence of chaotic sets (in the
sense of Definition 5.1 in paragraph 5.1) for the dynamical system (19).
Namely, if M(t0) = 0 for some t0 ∈ [0, T ) then there exists at least one point
x̃ε ∈ W u

ε (xt0
ε ) ∩W s

ε (xt0
ε ). This point is not unique, because any iteration

of the Poincaré map [P t0
ε ]n(x̃ε) will still belong to the intersection of these

two manifolds. Hence, there is a countable infinite sequence of points (see
Fig. 4(a))

x̃n
ε ∈W u

ε (xt0
ε ) ∩W s

ε (xt0
ε ) with n ∈ Z .

If, additionally,
lim

n→+∞
x̃n

ε = xt0
ε ,

i.e. the sequence {x̃n
ε } accumulates at the fixed point xt0

ε then the following
theorem about existence of the chaotic subset in R2 holds with the notation
P = P t0

ε and x = xt0
ε .

Theorem 4 (Smale-Birkhoff theorem). Let P : R2 → R2 be a diffeomor-
phism such that P has a hyperbolic fixed point x and W s(x) intersect W u(x)
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transversely. Then there exists N ∈ N and an open set D ∈ R2 such that
the map f = PN has a compact invariant chaotic set

Λ = ∩n∈Z f
n(D) (32)

in which f is topologically equivalent to the Bernoulli shift map σ acting in
the phase space of bi-infinite sequences Σ (defined and considered in para-
graph 5.1).

In Fig. 4(b) an example of such domain D is given. In this case, D is an
open set confined between two intersection points of W u

ε (xt0
ε ) and W s

ε (xt0
ε ).

One observes that the fifth iteration of Poincaré map f = P 5(D) intersects
D again. By iterating maps fn(D) and f−n(D) for each n ∈ N and taking
intersections of their images we construct the required set (32). The proof
of the fact that thus constructed Λ is the chaotic set and of its topological
equivalence to the symbolic dynamics relies on the properties of another
map–Smale’s horseshoe map. Investigation of this map will be conducted in
the next paragraph.

In the rest of this paragraph, an example of application of Theorems 3
to a system of the form (19) is presented.

Example 5.1. Consider the Duffing equation

ẍ = x− x3 − 2.5εẋ for x ∈ R and 0 < ε� 1, (33)

describing the motion of the nonlinear oscillator with the linear damping
(friction) term −2.5εẋ. For ε = 0, (35)is a Hamiltonian system with Hamil-
tonian:

H(x, ẋ) = H(x, y) =
y2

2
− x2

2
+
x4

4
.

In this case, there is a saddle at the origin, centers at (±1, 0), and two
symmetric homoclinic orbits

(x̄(t), ȳ±(t)) = ±(
√

2sech t, −
√

2sech t tanh t)T . (34)

Phase-plane portraits for (35) are shown in Fig. 5. Let us add the pe-
riodic perturbation εµ cos t describing a periodic applied external force to
the oscillator and characterised by another parameter µ > 0 (called forcing
amplitude). In this case, the dynamical system takes the form:

ẋ = y,

ẏ = x− x3 + ε(µ cos t− 2.5y). (35)

14



Figure 5: Sketch of the phase-plane portrait for equation (33) considered with
ε = 0 (left) and 0 < ε� 1 (right).

Let us compute the Melnikov function for (x̄, ȳ+) from (34) (computation
for (x̄, ȳ−) is identical). According to (31), one has:

f(x, y) =
[
y
x− x3

]
, g(x, y) =

[
0
(µ cos t− 2.5y)

]
and, therefore,

M(t0) =
∫ +∞

−∞
f(x̄(t), ȳ+(t)) ∧ g(x̄(t), ȳ+(t), t+ t0) dt

=
∫ +∞

−∞
ȳ+(t)(µ cos(t+ t0)− 2.5ȳ+(t)) dt. (36)

Substituting (35) into (36) one calculates:

M(t0) = −
√

2µ
∫ ∞
−∞

secht tanh t cos(t+ t0) dt− 5
∫ ∞
−∞

sech2t tanh2 t dt

=
√

2µπsech(π/2) sin t0 −
10
3
,

where we used (without proof) that∫ ∞
−∞

secht tanh t cos(t+ t0) dt = −πsech(π/2) sin t0.

By calculating k0 = 10 cosh(π/2)/(3
√

2π) ≈ 1.88 we, therefore, obtain

M(t0) =
√

2µπsech(π/2)
[
sin(t0)− k0

µ

]
. (37)

We observe that for 0 < µ < k0 the Melnikov integral M(t0) has no zeros
and, therefore, by Theorem 3 one has W u

ε (xt
ε, y

t
ε) ∩W s

ε (xt
ε, y

t
ε) = ∅ for all
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t ∈ [0, 1). Here (xt
ε, y

t
ε) denotes the hyperbolic periodic orbit to system (35)

such that
lim
ε→0

xt
ε = lim

ε→0
yt

ε = 0.

In turn, for µ > k0 manifolds W u
ε (xt

ε, y
t
ε) and W s

ε (xt
ε, y

t
ε) intersect trans-

versely in countably infinite number of points, see Fig. 6.

Figure 6: Manifolds Wu
ε (x0

ε, y
0
ε) and W s

ε (x0
ε, y

0
ε) calculated numerically for the

Poincare map P 0
ε of the perturbed Duffing equation (35) for ε = 0.1 and µ = 1.1

(a), µ = 1.9 (b) and µ = 3.0 (c). In the latter case, the manifolds intersect
transversely at infinitely many points.
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5.3 Smale’s horseshoe map

Consider the following map f : S = [0, 1]2 → R2 defined over the unit
square. First, S is compressed in the horizontal direction by a factor 0 <
λ < 1/2 and stretched by another factor µ > 2 in the vertical direction.
The resulting object then is folded in the middle and placed in R2 so that
it intersects the original square S along two vertical strips (see Fig. 7). One

Figure 7: Sketch of the action of the horseshoe map f in S.

observes that the such constructed f maps two horizontal stripes H0 =
[0, , 1] × [0, 1/µ] and H1 = [0, 1] × [1 − 1/µ, 1] into two vertical stripes
[0, λ]× [0, 1] and [1− λ, 1]× [0, 1], respectively. Moreover, restricted to H0

and H1 the map f is linear and, therefore, one-to-one. Indeed, in H0

f :
[
x
y

]
→
(
λ 0
0 µ

)[
x
y

]
, (38)

and in H1

f :
[
x
y

]
→
(
−λ 0
0 −µ

)[
x
y

]
+
[

1
µ

]
. (39)

On the other hand, the set f(S \ (H0 ∩H1)) ∩ S = ∅.
Let us denote Vi = f(Hi), i = 1, 2 and look at the second iteration f2 in

S (see Fig. 8). One observes that f maps V1∩V2 into the four vertical stripes
Vi1i2 , i, j ∈ {1, 2} such that f−1(Vi1i2) = Hi1 ∪ Vi2 . Looking at the higher
iterations of f one observes that fn(S), n ∈ N is given by 2n disjoint vertical
stripes Vi1i2...in having the width λn each. Here, for each k ∈ {1, 2..., n} one
has ik = 1 (ik = 2) if f−k(Vi1i2...in) ⊂ H0 (f−k(Vi1i2...in) ⊂ H1).

Analogously, the image of the inverse maps f−n(S), n ∈ N is given by
2n disjoint horizontal stripes Hi1i2...in having the width 1/µn each. Here,

17



Figure 8: Image of f2(S) (left) and f3(S) (right).

for each k ∈ {1, 2..., n} one has ik = 1 (ik = 2) if fk(Hi1i2...in) ⊂ H0

(fk(Hi1i2...in) ⊂ H1) (see Fig. 9). Now, if we take for a fixed n ∈ N an inter-

Figure 9: Image of f−2(S) (left) and f−3(S) (right).

section f−n(S)∪f−n+1(S)∩..∩f1(S)∩f2(S)∩fn−1(S)∩fn(S) it is given by
22n rectangles with size (λn, 1/µn) (see Fig.. 10). After further application
of f each of these rectangles is mapped into another one. Therefore, we can
conclude that the set

Λ =
(
∪n∈N f

−n(H0 ∪H1)
)
∪ (∪n∈N f

n(V0 ∪ V1)) (40)

is an invariant set for the map f . By construction this set consists of in-
finitely many points lying at the intersection of horizontal and vertical seg-
ments, has measure zero and each point of Λ is the limiting point of it.
Therefore, Λ is a Cantor set.

Moreover, we can describe the dynamics of f on Λ by constructing the
homeomorphism of the latter into the phase space Σ of symbolic dynam-
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Figure 10: Iterative construction of f−2(S) ∩ f−1(S) ∩ S ∩ f1(S) ∩ f2(S).

ics considered in paragraph 5.1. Indeed, for each x ∈ Λ let us define the
corresponding bi-infinite sequence s ∈ Σ as

s = h(x) = {si}+∞i=−∞, where f i(x) ∈ Hsi , si ∈ {1, 2}. (41)

One can show that thus defined map h : Λ → Σ is homeomorphism with
respect to the standard metric of S ⊂ R2 and the distance (1) of Σ. To verify
that h is surjective, take a sequence s ∈ Σ and for each n ∈ N consider the
set Rn(s) of all points x ∈ S, not necessarily belonging to Λ, such that

fk(x) ∈ Hsk
for all − n ≤ k ≤ 0 and fk(x) ∈ Vsk

for all k > 0.

For example, for n = 1 the set R1(s) is one of the four intersections Vi ∩Hj .
In general, Rn(s) belongs to the intersection of a vertical and a horizontal
stripes. These stripes are getting thinner and thinner as n→∞, approach-
ing in the limit a vertical and a horizontal segment, respectively. Such
segments obviously intersect at a single point x ∈ S with h(x) = s. Thus,
h : Λ → Σ is a one-to-one map. This implies, in particularly, that Λ is
uncountable.
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Finally, we observe that Smale’s horseshoe map acting in Λ is topologi-
cally equivalent to the Bernoulli shift map in Σ, i.e. it holds

f(x) = h−1(σ(h(x)) for all x ∈ Λ.

Indeed, if y = f(x) ∈ Λ then the corresponding bi-infinite sequence s′ =
h(y) ∈ Σ is obtained by a single shift of all indices of s = h(x) to the left,
i.e. s′ = σ(s), where we used definition (2). The topological equivalence
between f and σ is summarised in the diagram in Fig. 11 This combined

Figure 11: Topological equivalence between Smale’s horseshoe and Bernoulli shift
maps.

together with Theorem 1 and Definition 5.1 implies that Λ is the chaotic set
for Smale’s horseshoe map with the following properties.

Theorem 5. The horseshoe map f has a closed invariant set Λ that con-
tains a countable set of periodic orbits of arbitrarily long period, and an
uncountable set of non-periodic orbits, among which there is an orbit pass-
ing arbitrarily close to any point of Λ. Moreover, f is structurally stable.
Namely, for all sufficiently small ε, ||f − f1||C1(S) ≤ ε implies that the map
f1 has an invariant Cantor set Λ1, such that the dynamical system f1|Λ1 is
topologically equivalent to f |Λ .

Remark 5.4. The last statement on the structural stability of f restricted
to set Λ follows from the following observation. If Jacobians of f1 in H0

and H1 are close to constant ones of f (defined through (38) and (39),
respectively) then the images of these two horizontal stripes are still dis-
joint and close to two vertical stripes V0 and V1, respectively. This implies
that qualitatively the dynamics of f1 is the same as of f . Namely, the set
∪n

i=0f
i
1(S) will be consisting of 2n vertical thin disjoint curve-linear stripes

and ∪0
i=−nf

i
1(S) of 2n horizontal ones. Therefore, the set Λ1 of all points

x, such that fn
1 (x) ∈ S for all n ∈ Z is again homeomorphic to Σ and the

dynamics of f1 in it is equivalent to the one of shift map σ.
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