
Consultation questions

B5.6 Nonlinear Systems
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1. [25 marks] Consider the system

ẋ = x(3− x− 5y),

ẏ = y(−1 + x+ y).

with (x, y) ∈ R2.

(a) [5 marks] Show that both axes are invariant sets and that the line J = x + 3y − 3 = 0
is also an invariant set. Show that any intersection of these invariant sets defines a fixed
point.

(b) [5 marks] Use linear analysis to determine the stability of the origin and show that there
is a non-hyperbolic fixed point at (1/2, 1/2).

(c) [5 marks] Find a such that H = xy3Ja is a first integral of the system (Ḣ = 0).

(d) [5 marks] Use the first integral H to determine the stability of the non-hyperbolic fixed
point.

(e) [5 marks] Given that the three fixed points computed in (a) are unstable and hyperbolic,
sketch the phase portrait of the system.
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SOLUTION

(a) Since ẋ = 0 when x = 0 and ẏ = 0 when y = 0, both axes are invariant. Similarly
J̇ = J(y − x) and J̇ = 0 when J = 0.

The intersection of these three invariant sets define three points:

{{x→ 0, y → 1}, {x→ 3, y → 0}, {x→ 0, y → 0}} ,

and a direct computation shows that they are indeed fixed.

(b) The system has four fixed points:{
{x→ 0, y → 1}, {x→ 3, y → 0}, {x→ 0, y → 0},

{
x→ 1

2
, y → 1

2

}}
.

The origin is unstable with trivial eigenvalue {3,−1}. The last one has eigenvalues ±i
and is therefore non-hyperbolic.

(c) After simplification Ḣ = (−2+a)xy3(−x+y)(−3+x+3y)a. Hence Ḣ = 0 when a = 2.

(d)The function V = 1/16 − H vanishes at (1/2,1/2), is positive close to (1/2,1/2) and
satisfies all the conditions to be a Lyapunov function for the point x = y = 1/2. Hence
(1/2, 1/2) is stable.

(e)The direction of the arrows is obtained from the knowledge of the unstable and stable
direction of the origin.
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Figure 1: Phase portrait of the system.

Page 3 of 13 Turn Over



2. [25 marks] Consider the tent map, mapping the unit interval [0, 1] into itself and defined by

xn+1 =

{
2xn 0 6 xn 6 1/2,

2(1− xn) 1/2 6 xn 6 1
(1)

(a) [5 marks] Sketch the tent map and prove that it defines a map of the unit interval into
itself.

(b) [5 marks] Find all fixed points and determine their stability.

(c) [5 marks] Show that there is a single period-2 orbit and analyse its stability.

(d) [5 marks] Show that any initial rational value less than one ends up on a periodic orbit
and analyse the stability of this periodic orbit.

(e) [5 marks] The Lyapunov exponent for a map xn+1 = f(xn) is defined as

λ = lim
n→∞

1

n

n−1∑
k=0

|f ′(xk)|. (2)

Compute the Lyapunov exponent for the tent map and show that it is positive (hence,
the system is chaotic).
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SOLUTION
(a) If 0 6 xn 6 1/2, then 0 6 xn+1 6 1. Similarly, if 1/2 6 xn 6 1, then 0 6 xn+1 6 1.

1

1/2

xn

xn+1

Figure 2: The tent map.

(b) From the sketch, we see that there are 2 fixed point: x = 0 and a second one located
in the second half of the interval. So, we have x∗ = 2(1− x∗), that is x∗ = 2/3. Since we
have |f ′(2/3)| = 2 > 1, the fixed point is unstable. The fixed point at 0 is also unstable
since f ′(0) = 2 > 1.

(c) To find the period-2 orbit, we can start x0 either on the left (L) interval [0, 1/2] or on
the right (R) interval [1/2, 1). Similarly, the first iterate can be on L or R. We consider
the four different cases:

LL: If x0 and x1 are in L, we have x2 = 2(x1) = 2(2x0) so that x2 = x0 if x0 = 0 but that
is a fixed point.
RR: We have a period-2 orbit if x0 = 2(1 − (2(1 − x0))). That is, x0 = 2/3. Again, this
is just the fixed point.
LR: We have a period-2 orbit if x0 = 2(1− (2x0)), that is x0 = 2/5.
RL: We have a period-2 orbit if x0 = 2(2(1− x0)), that is x0 = 4/5.

We conclude that there is a single periodic orbit connecting 2/5 to 4/5.
The stability of a periodic orbit is given by f ′(x0)f

′(x1) = −4 < −1. So the orbit is
unstable.

(d) Consider orbits starting at a rational number x0 = p/q where p < q. The map sends
this initial value to another rational number of the form p′/q. Since there are at most
(q − 1) numbers of the form p/q, the orbit of x0 eventually repeats this number and the
period is at most q. Let k 6 q be the period of the orbit. Then, for a certain n its
stability is given by |

∏n+k
i=n+1 f

′(xi)| = 2k > 1 and we conclude that all periodic orbits are
unstable. Note that x = 1/2 is never part of a periodic orbit as x0 = 1/2 leads to x2 = 0,
a fixed point. Therefore f ′(xi) is always well defined.

(e) Since |f ′(xn)| = 2 for all xn 6= 1/2, we have λ = 2 > 0 and the system is chaotic.
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3. [25 marks] Consider the map, from the unit interval [0, 1] into itself, defined by

xn+1 = f(xn), (3)

for n = 0, 1, 2, . . . , where x0 is given.

(a) [5 marks] For a general f(x), what is a fixed point? Explain how to determine its stability
through linear analysis. Extend these results to periodic orbits by giving conditions that
guarantee the existence of stable orbits of period p (where p > 1 is an integer).

(b) [7 marks] The map (3) is unimodal if f(x) is continuous and there exists a point a ∈ (0, 1)
such that f is strictly increasing in [0, a) and strictly decreasing on (a, 1]. Show that if
f(a) 6 a then all solutions tend to fixed points which lie in [0, f(a)].

(c) [13 marks]

(i) Consider the particular function f(x) = µ sin(πx), where µ is a parameter in [0, 1].
Show that the point x = 0 is a fixed point. Determine its stability, and determine
the value µ∗ at which it loses its stability. Write the normal form at the bifurcation
and state the type of bifurcation.

(ii) Determine the stability of the new bifurcating fixed point in a neighbourhood of µ∗.
Show that this fixed point is stable for values of µ such that µ∗ < µ < 1/2.
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SOLUTION

(a) A fixed point x0 is such that f(x0) = x0. It is stable when |λ| < 1, where λ = Df(x0). An
orbit of period p exists if there exists x0 such that f (p)(x0) = x0 and xk = f (k)(x0) 6= x0
for k = 1, . . . , p− 1. It is stable if |

∏p
i=1 f

′(xi)| < 1.

(b) let F be the map associated with f . Then F ([0, a]) = F ([a, 1]) = [0, F (1)] ⊆ [0, a].
Starting at x0, after one iteration x1 ∈ [0, a]. In that interval x < y implies f(x) < f(y).
Therefore: If x1 < f(x1) then xi increases monotonically to the nearest fixed point. If
x1 > f(x1) then xi decreases monotonically to the nearest fixed point.

(c) The fixed point x = 0 is stable until µπ = 1, that is µ < 1/π. The normal form is obtained
by expanding f(x, µ) around x = 0 and µ = 1/π. Defining x =

√
6/πy and µ = 1/π(1+λ)

we obtain
yn+1 = (1 + λ)(yn − y3n) +O(5). (4)

This is the normal form of a supercritical pitchfork bifurcation.
A direct analysis of the normal form reveals that in a neighbourhood of µ∗, the new fixed
point is stable (with multiplier 1− 2λ, hence stable for λ small). Using the general result
about unimodal map and the fact that there are only two fixed points (one of which is
unstable), we conclude that the new fixed point is stable until f(1/2) = 1/2 that is until
µ = 1/2.
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4. Consider the two-dimensional system

dx

dt
= µ+ x2 + xy + y2,

dy

dt
= 2µ− y + x2 + xy,

where µ is a constant parameter.

(a) [10 marks] First, fix µ = 0.

(i) Find a quadratic approximation of the centre manifold in a neighbourhood of the
origin (x, y) = (0, 0).

(ii) Find a quadratic vector field that approximates the dynamics on the centre manifold,
in a neighbourhood of the origin. Use this vector field to determine the stability of
the origin. Sketch the phase portrait in a neighbourhood of the origin.

(b) [15 marks] Now, consider the case µ 6= 0 and the extended three-dimensional system

dx

dt
= µ+ x2 + xy + y2,

dy

dt
= 2µ− y + x2 + xy,

dµ

dt
= 0.

(i) Find a quadratic approximation of the centre manifold in a neighbourhood of the
origin (x, y, µ) = (0, 0, 0).

(ii) Find a quadratic vector field that approximates the dynamics on the centre manifold
in a neighbourhood of the origin (0, 0, 0), Determine the type of bifurcation occurring
at the origin for the original two-dimensional system when |µ| � 1.
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SOLUTION

(a) [10 marks] The linear centre space is along the x-axis so we write y = h(x) = ax2 + 0(3).
Therefore

ẏ = 2axẋ = 2ax(x2 + xy + y2) = 2ax(x2 + xax2) +O(4)

This is equal to
ẏ = −ax2 + x2 + xax2 +O(4)

Hence, we conclude that to lowest order a = 1 and y = x2 + O(3) is the quadratic
approximation of the centre manifold. Replacing y = x2 +O(3) in the first equation gives
ẋ = x2 + O(3) and we conclude that x = 0 is unstable. The phase portrait is given in
Figure 3.

Figure 3: Phase portrait of the system for µ = 0.

(b) [15 marks] Following the same steps, we find that for the extended system, the centre
manifold is

y = 2µ+ x2 +O(3).

The dynamics on the centre manifold is

ẋ = µ+ x2 + 2µx+ 4µ2 +O(3).

For |µ| � 1, there is a saddle-node bifurcation at µ = 0 with two fixed points when µ = 0
and no fixed point when µ > 0. For µ < 0, there are two fixed points: an unstable saddle
at (x, y) = (

√
µ, 0) + O(µ) and a stable node at (x, y) = (−√µ, 0) + O(µ). The phase

portrait is given in Figure 4.
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Figure 4: Phase portrait of the system for µ 6= 0.
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5. Consider the forced system

dx

dt
= x− x2,

dy

dt
= −y + 2xy + ε cos t,

(5)

where 0 < ε� 1 is a parameter.

(a) [5 marks] Define a first integral for a general n-dimensional system of the form ẋ = f(x).
Show that for ε = 0, the two-dimensional system (5) supports a first integral of the form
J = y(ax+ bx2). Determine a and b.

(b) [5 marks] Define a hyperbolic fixed point for a general n-dimensional system. Consider
the two-dimensional system (5) in the case ε = 0. Find the fixed points and determine
their stability. Which fixed point is hyperbolic? Find and sketch all invariant sets that
contain at least one fixed point.

(c) [5 marks] Define homoclinic and heteroclinic orbits for a general n-dimensional system.
Show that for ε = 0, system (5) has a heteroclinic orbit of the form

(x(t), y(t)) = (
1

1 + ect
, 0),

and determine the constant c.

(d) [5 marks] Define a conservative system for a general n-dimensional system, and explain
how to test if a system is conservative. Show that the two-dimensional system (5) is
conservative for ε = 0.

(e) [5 marks] Define the Melnikov integral for a general two-dimensional system of the form
ẋ = f(x)+εg(x, t) when the unforced system is conservative. What is the geometric inter-
pretation of the vanishing of the Melnikov integral? For the two-dimensional system (5),
compute the Melnikov integral.

[Hint: you can use without proof that∫ +∞

−∞

cos t

cosh2( t
2)

dt = 4πcsch(π),

∫ +∞

−∞

sin t

cosh2( t
2)

dt = 0. ]
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SOLUTION
Note for each question there is a theoretical part (worth about 2 points) and a practical part
for about 3 points. The computations are not difficult but answering all these questions and
the theory attached to it would demonstrate a very good understanding of the material.

(a) [5 marks] A first integral J = J(x) is a scalar function such that is constant on all
trajectories, that is J̇ = ∇J · f = 0. A direct computation gives a = −b, so we can choose
a = 1 = −b.

(b) [5 marks] A fixed point is hyperbolic if all the eigenvalues of its Jacobian matrix have
non-zero real parts. For our problem the fixed points are (0, 0) and (1, 0). The Jacobian
matrix is

Df =

(
1− 2x 0

2y 2x− 1

)
with eigenvalues (1,−1) and (−1, 1), respectively. Both fixed points are saddle node.
They are unstable and hyperbolic. There are nine invariant sets that cannot be further
decomposed: the fixed points, the positive and negative y-axis, the negative x-axis, the
interval between x = 0 and x = 1 on the y-axis, the interval between x = 0 and x = +∞
on the y-axis, the two vertical lines defined by x = 1 and y either positive or negative. In
addition, the unions of any of these sets is also invariant.

Invariant sets

y

x

Figure 5: The invariant sets of problem 3b.

(c) [5 marks] A Homoclinic orbit connects a fixed point to itself and a heteroclinic orbit
connects two different fixed points. The system has a heteroclinic orbit between the two
fixed point along the x axis and a direct substitution leads to c = −1.

(d) [5 marks] A conservative system is such that the dynamics conserves volume elements
in phase space. Through, Liouville’s theorem, a direct test is that Tr(Df(x(t)) vanishes
identically. A direct computation shows that TrJ = 0. Hence the system is conservative.

(e) [5 marks] For a two-dimensional system of the form ẋ = f(x) + εg(x, t), The Melnikov
integral is given by

M(t0) =

∫ +∞

−∞
f(x̂(t)) ∧ g(x̂(t), t+ t0) dt, (6)

where f ∧ g = (f1g2 − f2g1) and x̂(t) is a homoclinic or heteroclinic orbit. The Melnikov
integral gives a measure of the distance between stable and unstable manifolds under
perturbation. The vanishing of the integral is associated with either the preservation of
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the orbit or a transverse intersection, leading in the homoclinic case to the existence of a
Smale horseshoe for the dynamics. After simplification, and using the hint, the Melnikov
integral for the system is

M(t0) = πcsch(π) cos(t0). (7)

However, the perturbed dynamics does not have a Smale horseshoe since the stable and
unstable manifolds of the fixed points extend to infinity and the system does not exhibit
chaos (but the students have not seen that and any conclusion regarding the existence of
a chaotic set will be disregarded).
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