
B5.4 Waves & Compressible Flow Hilary Term

Question Sheet 4

1. Briefly derive the shallow water equations
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outlining the assumptions under which they hold.

Deduce from these equations that u± 2c is constant along curves satisfying dx/dt = u± c, where
c =
√
gh.

Shallow water of depth h0 is held at rest in x > 0 by a dam at x = 0. At t = 0 the dam starts to
leak so that water flows through with a volume flux proportional to the net force on the dam.

Deduce that u = −kc2 at x = 0, for some positive constant k. Hence show that, provided c0k < 3/2,
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2. (a) The Rankine–Hugoniot conditions for a stationary planar shock are
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Find a relationship between the upstream and downstream Mach numbers, M− and M+, and
show that the density and pressure ratios across the shock are given by
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where subscripts − and + refer to upstream and downstream values respectively.

Deduce that p+/ρ
γ
+ > p−/ρ

γ
− if and only if M− > 1.

Show also that the temperature of the gas increases on passing through the shock.

(b) A gas with speed of sound c0 flows steadily at speed U in a long, straight, uniform duct.
The end of the duct is suddenly closed, so that the gas is brought to rest over a continuously
increasing length of the duct. Show that the shock wave so caused propagates upstream with
a speed V given by
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3. (a) Using the principles of conservation of mass and momentum, derive the Rankine–Hugoniot
conditions [
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satisfied across a stationary hydraulic jump.

(b) Show that for a given mass flux hu = q, and depth h− on one side of the jump, the depth
on the other side h+ is uniquely defined. Show further that one of h− and h+ must be larger
than q2/3/g1/3, while the other is smaller.

(c) Show that energy is produced by the jump at a rate
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Deduce that the depth must increase as the fluid passes through the jump.

(d) Explain how (†) must be modified to describe a bore moving at speed V .

(e) A bore separates water of depth h− in x < V t from stationary water of depth h+ < h− in
x > V t. Show that the bore speed is given by
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How should the sign of V be chosen?

4. A stationary shock in a two-dimensional ideal gas flow is at x = 0. In the region x < 0 the gas
is uniform with pressure p−, density ρ− and velocity (u−, v−), where u− > 0 and v− > 0. In the
region x > 0 the corresponding quantities are p+, ρ+, u+ and v+.

Using conservation of mass, momentum and energy, show that v+ = v− and derive the Rankine–
Hugoniot conditions in the form[
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What thermodynamic principle may be used to show that ρ+ > ρ−?

Sketch a streamline passing through the shock, indicating the direction of deflection. Show that
the angle of deflection δ is given by
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and, by maximising the right-hand side as a function of v−, deduce that
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Using the results from question 2 above, show that
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Hence deduce that
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