
B5.1: Stochastic Modelling of Biological Processes Hilary Term 2019

Problem Sheet 1

1. This is a warm-up problem. You are asked to verify a few results from the Lecture Notes. This
problem is here to encourage you to read the Lecture Notes which cover the first four lectures. You
do not need to write long derivations (a few lines for each point (a)–(d) will be enough).

(a) Show that (1.23) satisfies the recurrence formula (1.20)–(1.21).

(b) Derive the chemical master equation (2.10).

(c) Consider the chemical system (3.1)–(3.2) for the chemical species B and C. Assume that the
number of A molecules is given by (3.16). Show that the equations for the mean values of B
and C are exactly given by the system of ODEs (3.17)–(3.18).

(d) Show that the maximum of (4.8) is attained at the point am given by (4.9).

2. Consider four chemical species A1, A2, A3 and A4 in a reactor of volume ν which are subject to the
following system of four chemical reactions

A1

k1−→ A2, A2

k2−→ A3, A3

k3−→ A4, and A4

k4−→ A2.

Assume that there are initially 10 molecules of A1, and no molecules of Ai, i = 2, 3, 4 in the system,
i.e. A1(0) = 10 and A2(0) = A3(0) = A4(0) = 0.

(a) Denote by p1(n1, t) the probability that A1(t) = n1. Find p1(n1, t) as a function of rate
constants.

(b) Denote by p2(n2, t) the probability that A2(t) = n2. Denote by φ2(n2) the corresponding
stationary distribution, i.e.

φ2(n2) = lim
t→∞

p2(n2, t).

Find φ2(n2) as a function of rate constants ki, i = 2, 3, 4.

(c) What is the average time taken to reach a state with A1 = 0 (no molecules of A1) ?

(d) Let k4 = 0. Derive a system of ordinary differential equations which describes the time
evolution of variances V1(t) and V2(t) defined by

Vi(t) =
∞
∑

n=0

(

ni −M(t)
)2

pi(ni, t), i = 1, 2.

(e) Find V1(t) as a function of time t and k1.

3. Consider the production-degradation system (1.9) which is described by the chemical master equation
(1.11). Denote by p(n, t) the probability that A(t) = n. Let φ(n) be the corresponding stationary
distribution defined by (1.19).

(a) Multiply the chemical master equation (1.11) by xn and sum over n to derive a partial differ-
ential equation (PDE) for the probability-generating function G(x, t) defined by (2.3).

(b) Write the ordinary differential equation (ODE) which is satisfied by the stationary probability-
generating function, Gs(x), defined by (2.4). Solve this ODE for Gs(x).

(c) Use Gs(x) obtained in part (b) to derive formula for φ(n). You should again obtain (1.23).



4. Consider a chemical species A in a container of volume ν which is subject to the following two
chemical reactions

A+A
k1−→ ∅, ∅ k2−→ A.

Consider parameter values k1/ν = 0.005 sec−1 and k2ν = 1 sec−1. Denote by p(n, t) the probability
that A(t) = n. Let φ(n) be the corresponding stationary distribution defined by (1.19).

(a) Write a computer code which estimates the stationary distribution φ(n) using long-time sim-
ulation of the Gillespie SSA (a4)–(d4).

(b) Write the chemical master equation which is satisfied by p(n, t).

(c) Multiply the chemical master equation by xn and sum over n to derive a PDE for the
probability-generating function G(x, t), defined by (2.3).

(d) Define the corresponding stationary probability-generating function, Gs(x), by (2.4). Show
that it is a solution of the ODE

G′′

s(x) =
k2ν

2

k1

1

1 + x
Gs(x).

(e) Use (2.5) to solve this ODE as

Gs(x) = C
√
1 + x I1



2

√

k2ν2(1 + x)

k1



 , where C is a constant.

(f) Use Gs(x) to calculate the stationary distribution φ(n) and meanMs = G′

s(1). You can use the
derivative formulae for the modified Bessel functions, namely I ′n(z) = In−1(z) − n/z In(z) =
In+1(z)+n/z In(z).Note that the corresponding deterministic ODEmodel da/dt = −2k1a2+k2
would approximate the mean as 10, while we have Ms

.
= 10.13.

(g) Compare your results obtained in part (a) by the Gillespie SSA (a4)–(d4) with formula for
φ(n) derived in part (f) using the probability-generating function.

5. Consider the chemical system (3.25), i.e.

3A
k1−→←−
k2

2A, A
k3−→←−
k4

∅, (3.25)

with the values of (dimensionless) rate constants k1, k2 and k3 given as

k1/ν
2 = 2.5× 10−4, k2/ν = 0.18, k3 = 37.5.

In this problem (and Problem 4 of Problem Sheet 2), we will vary the value of k4ν in the interval
(1700, 2500) and study the dependence of the behaviour of the chemical system (3.25) on this
parameter.

(a) Write the deterministic ODE model describing the system (3.25). Find all steady states of
this ODE for (i) k4ν = 1750; (ii) k4ν = 2100; (iii) k4ν = 2200; and (iv) k4ν = 2450. Which of
these steady states are stable?

(b) Plot the dependence of the steady states of the deterministic ODE model as a function of k4ν
for k4ν ∈ (1700, 2500).

(c) Use the Gillespie SSA (a4)–(d4) to simulate the chemical system (3.25) for (i) k4ν = 1750; (ii)
k4ν = 2100; (iii) k4ν = 2200 and (iv) k4ν = 2450. For each parameter value, plot the time
evolution of A(t) and estimate the stationary distribution using long time simulation of the
Gillespie SSA (a4)–(d4). Compare with the stationary distribution obtained by the chemical
master equation - formula (3.32). If there are any differences, explain them.



A couple of additional questions (OPTIONAL)

6. Consider the production-degradation system (1.9) which is described by the chemical master equation
(1.11). Assume that there are initially 0 molecules in the system, i.e. A(0) = 0, as in Figure 1.2(a).
In particular, we have M(0) = V (0) = 0.

(a) By considering (1.17), prove that V (t) = M(t), where M(t) is given by (1.25).

(b) Find solution pn(t) of (1.11).

(c) Estimate pn(t) at time t = 10 sec using multiple realizations of the SSA (a3)–(d3) for parameter
values k1 = 0.1 sec−1 and k2ν = 1 sec−1. Use the results of your computer code to verify your
solution obtained in part (b).

7. Consider two chemical species A and B in a reactor of volume ν which are subject to the following
two chemical reactions

A+A
k1−→ B, B

k2−→ A+A.

These two reactions can also be equivalently written as one reversible chemical reaction:

2A
k1−→←−
k2

B.

Suppose there are initially 100 molecules of A and no molecules of B. Denote by p(n, t) the probabil-
ity that there are n molecules of B at time t, and by φ(n) the corresponding stationary probability
distribution.

(a) Find φ(n) as a function of the rate constants k1 and k2.

(b) Verify your result in part (a) by using the long-time simulation of the Gillespie SSA (a4)–(d4)
for parameter values k1/ν = 0.3 sec−1 and k2 = 8 sec−1.


