
B5.1: Stochastic Modelling of Biological Processes Hilary Term 2019

Problem Sheet 2

1. This is a warm-up problem. You are asked to verify a few results from the Lecture Notes. This
problem is here to encourage you to read the Lecture Notes which cover Lectures 5–8. You do not
need to write long derivations (a few lines for each point (a)–(e) will be enough).

(a) Consider the SDE (5.7). Compute E[X(t)k] for k ∈ N.

(b) Consider the SDE (5.21). Show that the variance V (t) of X(t) is given by V (t) = t.

(c) Verify that (5.36) is a solution of (5.35).

(d) Show that the Fokker-Planck equation corresponding to (7.11) is given by (7.7).

(e) Verify that (8.9) is a solution of (8.8) and that (5.33) is a solution of (5.32).

2. The Lotka-Volterra (predator-prey) system was studied in your Part A Differential Equations 1
course (see pages 38-39 of your lecture notes from last year). We write it as a chemical system

A
k1−→ 2A, B

k2−→ ∅, A+B
k3−→ 2B, (∗)

for two chemical species A (“prey”) and B (“predator”). Its deterministic ODE model is

da

dt
= k1a− k3 a b,

db

dt
= −k2 b+ k3 a b, (♦)

where a(t) and b(t) are concentrations of A and B, respectively. Consider the (dimensionless)
parameters k1 = k2 = 10 and k3 = 0.1 and initial condition a(0) = 50 and b(0) = 50. For the
stochastic case, consider (dimensionless) volume ν = 1.

(a) Find critical points of ODEs (♦). Investigate their stability, sketch the phase diagram and
prove that the ODE system (♦) has periodic solutions.

(b) Implement the Gillespie SSA (a4)–(d4) for the chemical system (∗). Plot the number of
molecules of A and B as a function of time and compare your results with the solutions of
ODEs (♦). Plot both stochastic and deterministic trajectories (A(t), B(t)) and (a(t), b(t)) in
the phase diagram as well. You should observe that, for sufficiently long time, the determin-
istic and stochastic models give significantly different results. What types of the long-time
behaviour can the stochastic model have ?

(c) Give an example of a chemical system which has the same deterministic description given by
the ODEs (♦), but its stochastic description (given by the Gillespie SSA) differs from the
stochastic model corresponding to the chemical system (∗).

(d) Consider the chemical system (∗) together with two additional reactions

2A
k4−→ ∅, ∅ k5−→ A+B. (∗∗)

Then its deterministic ODE model is

da

dt
= k1a− k3 a b− 2k4 a

2 + k5,
db

dt
= −k2 b+ k3 a b+ k5. (♥)

Use dimensionless parameters k4 = 0.01 and k5 = 1. Show that the deterministic ODE
model (♥) for the combined system (∗)–(∗∗) does not have periodic solutions. What about its
stochastic model? Does it oscillate? If yes, what is its period of oscillations?



3. Consider the compartment-based model (8.13) of diffusion, studied in Section 8.2.

(a) Derive the system of equations (8.24)–(8.25).

(b) Let K = 2. Write the system of equations for V1, V2 and V1,2 and find their values at the
steady state.

(c) Consider the stationary diffusion master equation, i.e. the equation for the steady state solu-
tion of (8.22). Show that the solution of this equation can be written in the form

C

n1!n2! . . . nK !
, (†)

for n1 + n2 + · · ·+ nK = N , where N is the total number of diffusing molecules and C is the
normalization constant. Find the value of C and use (†) to calculate the stationary values
of the mean and variance vectors, M and V, and covariance matrix {Vi,j} defined by (8.23),
(8.26) and (8.27), respectively.

(d) Consider that the number of compartments K is large (i.e. study the formal limit K → ∞)
and assume that N = 10K. Then equations (8.24)–(8.25) imply that there will be on average
10 molecules in each compartment at the steady state. What is the probability that a given
compartment will contain at least 20 molecules?

4. We revisit the problem studied in Question 5 on Problem Sheet 1. We consider the chemical
system (3.25), i.e.

3A
k1−→←−
k2

2A, A
k3−→←−
k4

∅ (3.25)

and choose the values of (dimensionless) rate constants k1, k2 and k3 as

k1/ν
2 = 2.5× 10−4, k2/ν = 0.18, k3 = 37.5.

We will vary the value of k4ν in the interval (1700, 2500) and study the dependence of the behaviour
of the chemical system (3.25) on this parameter.

(a) Write the chemical Fokker-Planck equation corresponding to the system (3.25). Plot the
stationary distribution ps given by the chemical Fokker-Planck equation for (i) k4ν = 1750;
(ii) k4ν = 2100; (iii) k4ν = 2200; and (iv) k4ν = 2450. Compare with the results computed in
Question 5 on Problem Sheet 1 (using the Gillespie SSA and the chemical master equation).
If there are any differences, explain them.

(b) Plot the graph of local maxima and minima of ps as a function of k4ν for k4ν ∈ (1700, 2500).
Compare with the graph of steady states of the deterministic ODE model obtained in Ques-
tion 5 on Problem Sheet 1. If there are any differences, explain them.

(c) Plot the average switching time between two favourable states of the system as a function
of k4ν ∈ (1700, 2500). To obtain this plot, use formula (7.20). Compare the results with the
Gillespie SSA for (i) k4ν = 2100; and (ii) k4ν = 2200.

(d) Use k4ν = 2100. Plot the stationary distribution. Now, change ν to 10ν. That means that we
will use the following parameters:

k1/ν
2 = 2.5× 10−4/100 = 2.5× 10−6, k2/ν = 0.18/10 = 0.018,

k3 = 37.5, k4ν = 2100 · 10 = 21000.

Plot the stationary distribution. What is the effect of changing the volume ν on the shape of
the stationary distribution?



A couple of additional questions (OPTIONAL)

5. This problem is about generating random numbers. Let us assume that you are able to sample
random numbers which are uniformly distributed in (0, 1).

(a) How would you sample random numbers which are uniformly distributed on a sphere with
radius R ?

(b) Suppose that r1 and r2 are two random numbers uniformly distributed in (0, 1). Define

ξ1 =
√

2| log r1| cos(2πr2), ξ2 =
√

2| log r1| sin(2πr2).

Show that ξ1 and ξ2 are random numbers sampled from normal distribution with zero mean
and unit variance.

Note: This method for sampling normally distributed random numbers is called the Box-Muller
transform or the Box-Muller algorithm.

6. A particle moves in a one-dimensional interval [0, L], where L > 0, according to the discretized
stochastic differential equation:

X(t+∆t) = X(t) + f(X(t))∆t+
√
2∆t ξ,

where X(t) ∈ [0, L] is the particle position at time t ≥ 0, f : [0, L] → R, f(0) = 0, ∆t > 0 is
the time step and ξ is a random number which is sampled from the normal distribution with zero
mean and unit variance. The initial condition is X(0) = 0. The boundary x = 0 is reflective, i.e.
whenever the particle crosses this boundary, it is reflected back to the domain. In parts (a) and
(b), we will consider L =∞ which means that X(t) ∈ [0,∞).

(a) Let L = ∞. Let p(x, t) be the distribution of the probability that X(t) = x. Write the
Fokker-Planck equation satisfied by p(x, t) in the limit ∆t→ 0. Write the boundary condition
for the Fokker-Planck equation at x = 0.

(b) Let L =∞ and f(x) = −x. Find the stationary distribution.

(c) Let L = 10 and f(x) ≡ 0 for x ∈ [0, L]. Let X(0) = 0. What is the average time to reach the
right boundary, i.e. the point x = L?

(d) Let L = 1 and f(x) = x(1 − x), with a reflective boundary condition at x = L. Find the
stationary distribution. Express it in the form ps(x) = Ch(x) where C is the normalization
constant. You need not calculate the normalization constant C explicitly.


