Problem Set 2

1. (a) Let R be a relation (that is R is a set of ordered pairs). Prove that $\operatorname{dom}(R)$, which we define to be $\{x: \exists y((x, y) \in R)\}$, is a set.
(b) Let X, Y be sets. Prove there exists a set whose elements are the functions from X onto Y. I.e. surjections.
(c) Let X be a set. Prove that there is a set consisting precisely of all strict total orders on X.
2. Prove, using induction and the fact that each $n \in \omega$ is transitive (by sheet 1) that $n \in n$ is false for every $n \in \omega$. (Do not use the Axiom of Foundation.)
3. Prove that the function sending n to n ! exists (as a set). Hint: Use Recursion in the form of Theorem 5.1 with $X=\omega \times \omega$.
4. Prove that multiplication on ω is commutative by proving the following statements for $n, m \in \omega$ by induction. You may use the other arithmetic properties established in lectures; or (hint) prove that $m * n=n . m$ satisfies the same recursion as m.n.
(i) $0 . n=0$
(ii) $m^{+} . n=m . n+n$
(iii) $m . n=n . m$
5. Write $1=0^{+}, 2=1^{+}$. Define $n \in \omega$ to be even if it is of the form $2 . k$ for some $k \in \omega$ and odd if it is of the form $2 . h+1$ for some $h \in \omega$. Prove that
(i) every element of ω is either even or odd
(ii) no element of ω is both even and odd
6. A Peano system is a triple $\left(A, s, a_{0}\right)$ in which A is a set, $a_{0} \in A$, and $s: A \rightarrow A$ is a function with is (a) one-to-one, (b) does not include a_{0} in its range, and (c) satisfies the Principle of Induction: that is, if $S \subseteq A, a_{0} \in S$ and $\forall a(a \in S \rightarrow s(a) \in S)$, then $S=A$.
(i) Prove that $\left(\omega, x \mapsto x^{+}, 0\right)$ is a Peano system.
(ii) Suppose $\left(A, s, a_{0}\right)$ is a Peano system. Prove that there exists an isomorphism from $\left(\omega,{ }^{+}, 0\right)$ to $\left(A, s, a_{0}\right)$, that is, there is a bijection $f: \omega \rightarrow A$ such that $f(0)=a_{0}$ and, for all $n \in \omega, f\left(n^{+}\right)=s(f(n))$.
[Hence, up to isomorphism, $\left(\omega,^{+}, 0\right)$ is the unique Peano system.]
Hint: Define f by recursion and verify the required properties.
7. Let $X=X_{0}$ be a set. By the axiom of Unions, the sets $X_{1}=\bigcup X, X_{2}=\bigcup X_{1}, \ldots$ are sets. The transitive closure of X is defined to be $T(X)=\bigcup_{n=0}^{\infty} X_{n}=\bigcup\left\{X_{0}, X_{1}, \ldots\right\}$. Prove that
(i) $T(X)$ is a set
(ii) $T(X)$ is transitive
(iii) $X \subseteq T(X)$
(iv) If $X \subseteq Y$ and Y is transitive than $T(X) \subseteq Y$
(v) If X is transitive then $T(X)=X$.
8. A set X is called hereditarily finite if its transitive closure $T(X)$ is a finite set.
(i) Prove that the following sets are hereditarily finite

$$
\emptyset, \quad\{\emptyset\}, \quad\{\emptyset,\{\emptyset\}\}, \quad\{\{\emptyset\},\{\emptyset,\{\emptyset\}\}\}
$$

(ii) Prove that a subset of a hereditarily finite set is hereditarily finite, and an element of a hereditarily finite set is hereditarily finite. [You may assume: a subset of a finite set is finite]
(iii) Let \mathbf{H} be the class of hereditarily finite sets. It turns out that \mathbf{H} is in fact a set. Prove that the Empty Set Axiom, the Axioms of Extensionality, Pairs, Unions and the Comprehension Scheme are all true in \mathbf{H}. [For example, the Axiom of Pairs is true in \mathbf{H} provided that, if a, b are hereditarily finite sets, there is a hereditarily finite set c whose only hereditarily finite elements are a and b. This will be true if indeed $\{a, b\}$ is hereditarily finite.]
(iv) Is $\omega \in \mathbf{H}$?
(v) (For those with B1.1 Logic or equivalent) Show that the Axiom of Infinity is not a consequence (in first order predicate logic) of the Empty Set Axiom, Extensionality, Pairs, Union and Comprehension.
(vi) A set is called hereditarily countable if $T(X)$ is a countable set (i.e. is finite or is in bijection with ω). Let \mathbf{K} be the class of hereditarily countable sets. In fact \mathbf{K} is a set. Now $\omega \in \mathbf{K}$. Which of the axioms Extensionality, Empty Set, Pairs, Unions, Comprehension Scheme, Infinity, Powerset hold in K? [You may use that a countable union of countable sets is countable, though this does not follow from the axioms so far given.]
(vii) (For those with B1.1 Logic or equivalent) Is it possible to prove the Powerset Axiom from the above axioms (now including Axiom of Infinity)?

