There are no MFoCs questions this week. Everyone should try everything! Questions (or parts of questions) marked with a + sign are intended as a challenge for enthusiasts: we will not go through them in classes!

1. Show that, for some $c>1$ and every $n \geq 5$, there is a family $\mathcal{F} \subset \mathcal{P}(n)$ of size at least c^{n} such that every set in \mathcal{F} has odd size, and the intersection of any two distinct sets from \mathcal{F} has odd size.
2. Let $\mathcal{A}, \mathcal{B} \subset \mathcal{P}(n)$ be two set systems such that $|A \cap B|$ is even for all $A \in \mathcal{A}$ and $B \in \mathcal{B}$. Prove that $|\mathcal{A}| \cdot|\mathcal{B}| \leq 2^{n}$. Can you describe the pairs \mathcal{A}, \mathcal{B} for which we have equality? (Hint: Show that if $A, A^{\prime} \in \mathcal{A}$ then we may assume $A \triangle A^{\prime} \in \mathcal{A}$.)
3. Prove that for $n \geq n_{0}(k)$ every family $\mathcal{A} \subset\binom{[n]}{k}$ which does not contain three disjoint sets satisfies $|\mathcal{A}| \leq|\mathcal{B}(n)|$, where

$$
\mathcal{B}(n):=\left\{A \in[n]^{(k)}: A \cap\{1,2\} \neq \emptyset\right\} .
$$

4. Let P be a set of n points in the plane that do not all lie on a straight line. Prove that they determine at least n lines. [Hint: For each point, consider the set of lines that passes through it.]
5. Prove that a non-trivial decomposition of the edges of K_{n} into edgedisjoint complete subgraphs requires at least n subgraphs. Show how this bound can be achieved.
6. A set P in \mathbb{R}^{n} is a two-distance set if there are real numbers α, β such that $\|x-y\|_{2} \in\{\alpha, \beta\}$ for all distinct $x, y \in P$. Let $P=\left\{p_{1}, \ldots, p_{k}\right\}$ be a two-distance set.
(a) For each $i \in[k]$, let f_{i} be the polynomial in variables $x=\left(x_{1}, \ldots, x_{n}\right)$ defined by

$$
f_{i}(x)=\left(\left\|x-p_{i}\right\|_{2}^{2}-\alpha^{2}\right)\left(\left\|x-p_{i}\right\|_{2}^{2}-\beta^{2}\right)
$$

Show that the polynomials f_{i} are linearly independent. [Hint: Consider $f_{i}\left(x_{j}\right)$.]
(b) Deduce that $k \leq\binom{ n}{2}+3 n+2$. [Hint: Find a basis for the space spanned by the polynomials f_{i}.]
7. Let \mathcal{F} be a collection of functions from $[n]$ to \mathbb{Z}. Suppose that, for every pair of distinct functions $f, g \in \mathcal{F}$ we have $f(i)=g(i)+1$ for some i. Prove that $|\mathcal{F}| \leq 2^{n}$. [Hint: look for a suitable collection of polynomials.]
8. Let p be a prime and let $n \geq p^{2}$.
(a) Prove that if $\mathcal{A} \subset[n]^{\left(p^{2}\right)}$ with $|A \cap B| \not \equiv 0 \bmod p$ for all distinct $A, B \in \mathcal{A}$ then $|\mathcal{A}| \leq\binom{ n}{\leq p}$.
(b) Prove that if $\mathcal{A} \subset[n]^{\left(p^{2}\right)}$ with $|A \cap B| \equiv 0 \bmod p$ for all $A, B \in \mathcal{A}$ then $|\mathcal{A}| \leq\binom{ n}{\leq p}$.
Using (a) and (b), show that for all $\varepsilon>0$ there is N_{0} so that the following holds for $N \geq N_{0}$. The pairs in $[N]^{(2)}$ can be coloured red or blue so that $X^{(2)}$ receives both colours for every $X \subset[N]$ with $|X| \geq N^{\varepsilon}$.
9. Prove that there is an uncountable collection \mathcal{A} of subsets of \mathbb{N} such that $|A \cap B|$ is finite for all distinct $A, B \in \mathcal{A}$.
10.+ Let $1 \leq i \leq j \leq n$. Let $A=\left(A_{S T}\right)$ be a $\binom{n}{i} \times\binom{ n}{j}$ matrix with rows indexed by elements of $[n]^{(i)}$ and columns indexed by elements of $[n]^{(j)}$, where $a_{S T}=1$ if $S \subset T$ and $a_{S T}=0$ otherwise. Prove that $\operatorname{rank}(A)=$ $\min \left\{\binom{n}{i},\binom{n}{j}\right\}$.

