There are no MFoCs questions this week. Everyone should try everything! Questions (or parts of questions) marked with a + sign are intended as a challenge for enthusiasts: we will not go through them in classes!

- 1. Show that, for some c > 1 and every $n \ge 5$, there is a family $\mathcal{F} \subset \mathcal{P}(n)$ of size at least c^n such that every set in \mathcal{F} has odd size, and the intersection of any two distinct sets from \mathcal{F} has odd size.
- 2. Let $\mathcal{A}, \mathcal{B} \subset \mathcal{P}(n)$ be two set systems such that $|A \cap B|$ is even for all $A \in \mathcal{A}$ and $B \in \mathcal{B}$. Prove that $|\mathcal{A}| \cdot |\mathcal{B}| \leq 2^n$. Can you describe the pairs \mathcal{A}, \mathcal{B} for which we have equality? (Hint: Show that if $A, A' \in \mathcal{A}$ then we may assume $A \triangle A' \in \mathcal{A}$.)
- 3. Prove that for $n \geq n_0(k)$ every family $\mathcal{A} \subset {[n] \choose k}$ which does not contain three disjoint sets satisfies $|\mathcal{A}| \leq |\mathcal{B}(n)|$, where

$$\mathcal{B}(n) := \{ A \in [n]^{(k)} : A \cap \{1, 2\} \neq \emptyset \}.$$

- 4. Let P be a set of n points in the plane that do not all lie on a straight line. Prove that they determine at least n lines. [Hint: For each point, consider the set of lines that passes through it.]
- 5. Prove that a non-trivial decomposition of the edges of K_n into edge-disjoint complete subgraphs requires at least n subgraphs. Show how this bound can be achieved.
- 6. A set P in \mathbb{R}^n is a two-distance set if there are real numbers α, β such that $||x-y||_2 \in {\alpha, \beta}$ for all distinct $x, y \in P$. Let $P = {p_1, \ldots, p_k}$ be a two-distance set.
 - (a) For each $i \in [k]$, let f_i be the polynomial in variables $x = (x_1, \dots, x_n)$ defined by

$$f_i(x) = (||x - p_i||_2^2 - \alpha^2)(||x - p_i||_2^2 - \beta^2).$$

Show that the polynomials f_i are linearly independent. [Hint: Consider $f_i(x_j)$.]

- (b) Deduce that $k \leq \binom{n}{2} + 3n + 2$. [Hint: Find a basis for the space spanned by the polynomials f_i .]
- 7. Let \mathcal{F} be a collection of functions from [n] to \mathbb{Z} . Suppose that, for every pair of distinct functions $f, g \in \mathcal{F}$ we have f(i) = g(i) + 1 for some i. Prove that $|\mathcal{F}| \leq 2^n$. [Hint: look for a suitable collection of polynomials.]

- 8. Let p be a prime and let $n \ge p^2$.
 - (a) Prove that if $A \subset [n]^{(p^2)}$ with $|A \cap B| \not\equiv 0 \mod p$ for all distinct $A, B \in \mathcal{A}$ then $|\mathcal{A}| \leq \binom{n}{\leq p}$.
 - (b) Prove that if $A \subset [n]^{(p^2)}$ with $|A \cap B| \equiv 0 \mod p$ for all $A, B \in A$ then $|A| \leq \binom{n}{< p}$.
 - Using (a) and (b), show that for all $\varepsilon > 0$ there is N_0 so that the following holds for $N \geq N_0$. The pairs in $[N]^{(2)}$ can be coloured red or blue so that $X^{(2)}$ receives both colours for every $X \subset [N]$ with $|X| \geq N^{\varepsilon}$.
- 9. Prove that there is an uncountable collection \mathcal{A} of subsets of \mathbb{N} such that $|A \cap B|$ is finite for all distinct $A, B \in \mathcal{A}$.
- 10.⁺ Let $1 \le i \le j \le n$. Let $A = (A_{ST})$ be a $\binom{n}{i} \times \binom{n}{j}$ matrix with rows indexed by elements of $[n]^{(i)}$ and columns indexed by elements of $[n]^{(j)}$, where $a_{ST} = 1$ if $S \subset T$ and $a_{ST} = 0$ otherwise. Prove that $\operatorname{rank}(A) = \min\{\binom{n}{i}, \binom{n}{j}\}$.

long@maths.ox.ac.uk