C6.2/B2. Continuous Optimization

Problem Sheet 1

Please hand-in for marking Problems 1 (i, iii—v), 2 and 3; please note that Problem 1 can
be found with proof in various optimization textbooks and you are welcome to have a look.
The other problems are optional/for revision.

1. Let f: R™ — R be a function. We say that f is convex if and only if
fOz+ 1 =Ny) <Af(x)+ (1 —=AN)f(y), forallx and y inR", and any A € [0, 1]. (1)
Prove the following statements:

(i) If f is convex, then z* € R™ is a local minimizer of f if and only if it is a global minimizer.

(ii) (optional) Assume that f € C!(R™). Then f is convex if and only if for any z € R" and
y € R™ we have

fy) = fz) + V(@) (y — ). (2)

(Comment: this property means that geometrically, the graph of the first order approzimation
of f at x lies below the graph of f.)

(iii) If f € C*(R™) is convex and x* is a stationary point of f (i.e., Vf(z*) = 0), then z* is a global
minimizer of f.

(iv) Let f € C3(R"), z € R™ and 0 # s € R". Write down the second-order Taylor expansion or
second-order mean-value theorem of the (univariate) function @ — f(x + as) around « = 0.

(v) Using (iv), show that f € C*(R") is convex if and only if V2 f(z) is positive semi-definite for
all z € R" (i.e., sTV2f(x)s > 0 for all s € R™.)
2. Consider the function

flx) =10(zy —22)? + (1 —21)%, 2z = (1 22)T €R2

(a) Compute the gradient vector and the Hessian matrix of f at (any) z € R2. Find all stationary
points of f. Show that 2* = (1 1)7 is the unique global minimizer of f and that the Hessian
of f at x* is positive definite.

(b) Show that the Hessian matrix V2 f(x) of f is singular if and only if z satisfies the condition
xy — 23 = 0.05.

Hence show that V2 f(x) is positive definite for all x such that f(z) < 0.025.

(¢) Show that f is not a convex function.

3. Show that the function
f(a) = (22 —a?)* + a7
has only one stationary point which is neither a local maximum nor a local minimum.
4. Suppose that g € R™ and H € R"*™ are constant, H is a symmetric matrix and that the quadratic
function ¢ : R" + R is defined by q(x) = g7z + %mTHx. By writing ¢ in terms of the entries in g

and H, show that Vq(z) = g+ Hz and V2g(z) = H. Then show that if H is positive semidefinite,
then ¢(x) is a convex function; if H is negative semidefinite, then ¢(x) is a concave function.



Consider minimizing ¢(x) by applying a generic linesearch method with search directions s* and
exact linesearch. Show that if (s*)THs* > 0, the exact linesearch is well-defined and has the
following explicit expression for the stepsize oy,

Vq(z*)T sk
W= TSR THSE

(Comment: The solution to the second part of this problem can be found in the lecture slides. )

. Let ® : R — R be a univariate (i.e., one variable) nonlinear function ® = ®(«). Consider approxi-
mating ® by a quadratic function g(a) = aa® + ba + ¢, for some a, b, c € R, such that

q(0) = ®(0), ¢'(0)='(0) and g(ag) = P(n), 3)

for some ag > 0; we say that g interpolates ® at these points. Find the values of a, b and ¢ (in
terms of the known quantities ®(0), ®'(0) and ®(ap)) such that the conditions (3) are satisfied.
Then find a condition that ®(0), ®'(0) and ®(ay) need to satisfy to ensure that g has a (global)
minimizer. Also, find conditions (on the same quantities) such that ®(a) and ¢(«) are guaranteed
to have a minimizer in the interval (0, ag).

(Comment: The interpolation approach above is used to numerically approzimate the exact line-
search stepsize for nonlinear, nonquadratic functions. In particular, in a generic linesearch method
applied to minimizing some function f (see GLM in the handouts), let ®(a) := ®1(a) = f(z*+as*),
and set the stepsize a¥ to the minimizer of q(a) above (which approzimates the minimizer of ®(a));
alternatively, replace one of the interpolation points, 0 or ag, by the minimizer of q(a), and repeat
the interpolation process. Note that cubic polynomials may also be used for interpolation as long
as the interpolation points are carefully chosen so that ®, and the interpolating polynomial, has a
minimizer in the interval determined by these points.)

. Let f: R — R, f(x) = 22. Consider applying the generic linesearch method (GLM) to minimizing
f starting from z° = 2.

(i) Let the directions in GLM be s* := (=1)k¥*! and the stepsizes o := 2 + 3/2¥*1. Write down
the expression of the iterates ¥ generated by the GLM and plot the pairs (z*, f(z*)) on the
graph of f. What do you observe? Show that the sequence {z*} has two limit points: +1 and
—1. Is any of these points a stationary point of f?

(ii) Similarly, let now s* := —1 and o* = 1/2¥+1. Again, write down the expression of the iterates
2% generated by the GLM and plot the pairs (z¥, f(z*)) on the graph of f. What do you
observe? Show that {z*} converges to 1.

(Comment: For plots, see the lecture slides on GLM-inexact linesearch. This problem illustrates
that even when the search directions are descent in a generic linesearch method (GLM) and the
stepsize ensures the function values at the iterates decrease, the GLM may not be convergent to a
minimizer or stationary point of our objective f; the amount of decrease the stepsize gives in f in
relation to its length is crucial. In particular, case i) above illustrates that the stepsize cannot be
“too long” when it yields little decrease in f; case ii) exemplifies that that stepsize cannot be “too
short” as it cuts the direction too much and yields little progress. Recall lecture slides.)



