## C6.2/B2. Continuous Optimization

## Problem Sheet 1

Please hand-in for marking Problems 1 (i, iii–v), 2 and 3; please note that Problem 1 can be found with proof in various optimization textbooks and you are welcome to have a look. The other problems are optional/for revision.

1. Let  $f: \mathbb{R}^n \to \mathbb{R}$  be a function. We say that f is convex if and only if

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$
, for all  $x$  and  $y$  in  $\mathbb{R}^n$ , and any  $\lambda \in [0, 1]$ . (1)

Prove the following statements:

- (i) If f is convex, then  $x^* \in \mathbb{R}^n$  is a local minimizer of f if and only if it is a global minimizer.
- (ii) (optional) Assume that  $f \in \mathcal{C}^1(\mathbb{R}^n)$ . Then f is convex if and only if for any  $x \in \mathbb{R}^n$  and  $y \in \mathbb{R}^n$ , we have

$$f(y) \ge f(x) + \nabla f(x)^{\top} (y - x). \tag{2}$$

(Comment: this property means that geometrically, the graph of the first order approximation of f at x lies below the graph of f.)

- (iii) If  $f \in C^1(\mathbb{R}^n)$  is convex and  $x^*$  is a stationary point of f (i.e.,  $\nabla f(x^*) = 0$ ), then  $x^*$  is a global minimizer of f.
- (iv) Let  $f \in \mathcal{C}^2(\mathbb{R}^n)$ ,  $x \in \mathbb{R}^n$  and  $0 \neq s \in \mathbb{R}^n$ . Write down the second-order Taylor expansion or second-order mean-value theorem of the (univariate) function  $\alpha \to f(x + \alpha s)$  around  $\alpha = 0$ .
- (v) Using (iv), show that  $f \in \mathcal{C}^2(\mathbb{R}^n)$  is convex if and only if  $\nabla^2 f(x)$  is positive semi-definite for all  $x \in \mathbb{R}^n$  (i.e.,  $s^T \nabla^2 f(x) s \geq 0$  for all  $s \in \mathbb{R}^n$ .)
- 2. Consider the function

$$f(x) = 10(x_2 - x_1^2)^2 + (1 - x_1)^2, \quad x = (x_1 \ x_2)^T \in \mathbb{R}^2.$$

- (a) Compute the gradient vector and the Hessian matrix of f at (any)  $x \in \mathbb{R}^2$ . Find all stationary points of f. Show that  $x^* = (1 \ 1)^T$  is the unique global minimizer of f and that the Hessian of f at  $x^*$  is positive definite.
- (b) Show that the Hessian matrix  $\nabla^2 f(x)$  of f is singular if and only if x satisfies the condition

$$x_2 - x_1^2 = 0.05.$$

Hence show that  $\nabla^2 f(x)$  is positive definite for all x such that f(x) < 0.025.

- (c) Show that f is not a convex function.
- 3. Show that the function

$$f(x) = (x_2 - x_1^2)^2 + x_1^5$$

has only one stationary point which is neither a local maximum nor a local minimum.

4. Suppose that  $g \in \mathbb{R}^n$  and  $H \in \mathbb{R}^{n \times n}$  are constant, H is a symmetric matrix and that the quadratic function  $q : \mathbb{R}^n \mapsto \mathbb{R}$  is defined by  $q(x) = g^T x + \frac{1}{2} x^T H x$ . By writing q in terms of the entries in g and H, show that  $\nabla q(x) = g + H x$  and  $\nabla^2 q(x) = H$ . Then show that if H is positive semidefinite, then q(x) is a convex function; if H is negative semidefinite, then q(x) is a concave function.

Consider minimizing q(x) by applying a generic linesearch method with search directions  $s^k$  and exact linesearch. Show that if  $(s^k)^T H s^k > 0$ , the exact linesearch is well-defined and has the following explicit expression for the stepsize  $\alpha_k$ ,

$$\alpha_k = -\frac{\nabla q(x^k)^T s^k}{(s^k)^T H s^k}.$$

(Comment: The solution to the second part of this problem can be found in the lecture slides.)

5. Let  $\Phi : \mathbb{R} \to \mathbb{R}$  be a univariate (i.e., one variable) nonlinear function  $\Phi = \Phi(\alpha)$ . Consider approximating  $\Phi$  by a quadratic function  $q(\alpha) = a\alpha^2 + b\alpha + c$ , for some  $a, b, c \in \mathbb{R}$ , such that

$$q(0) = \Phi(0), \quad q'(0) = \Phi'(0) \quad \text{and} \quad q(\alpha_0) = \Phi(\alpha_0),$$
 (3)

for some  $\alpha_0 > 0$ ; we say that q interpolates  $\Phi$  at these points. Find the values of a, b and c (in terms of the known quantities  $\Phi(0)$ ,  $\Phi'(0)$  and  $\Phi(\alpha_0)$ ) such that the conditions (3) are satisfied. Then find a condition that  $\Phi(0)$ ,  $\Phi'(0)$  and  $\Phi(\alpha_0)$  need to satisfy to ensure that q has a (global) minimizer. Also, find conditions (on the same quantities) such that  $\Phi(\alpha)$  and  $\Phi(\alpha)$  are guaranteed to have a minimizer in the interval  $\Phi(0)$ .

(Comment: The interpolation approach above is used to numerically approximate the exact line-search stepsize for nonlinear, nonquadratic functions. In particular, in a generic linesearch method applied to minimizing some function f (see GLM in the handouts), let  $\Phi(\alpha) := \Phi_k(\alpha) = f(x^k + \alpha s^k)$ , and set the stepsize  $\alpha^k$  to the minimizer of  $q(\alpha)$  above (which approximates the minimizer of  $\Phi(\alpha)$ ); alternatively, replace one of the interpolation points, 0 or  $\alpha_0$ , by the minimizer of  $q(\alpha)$ , and repeat the interpolation process. Note that cubic polynomials may also be used for interpolation as long as the interpolation points are carefully chosen so that  $\Phi$ , and the interpolating polynomial, has a minimizer in the interval determined by these points.)

- 6. Let  $f: \mathbb{R} \to \mathbb{R}$ ,  $f(x) = x^2$ . Consider applying the generic linesearch method (GLM) to minimizing f starting from  $x^0 = 2$ .
  - (i) Let the directions in GLM be  $s^k := (-1)^{k+1}$  and the stepsizes  $\alpha^k := 2 + 3/2^{k+1}$ . Write down the expression of the iterates  $x^k$  generated by the GLM and plot the pairs  $(x^k, f(x^k))$  on the graph of f. What do you observe? Show that the sequence  $\{x^k\}$  has two limit points: +1 and -1. Is any of these points a stationary point of f?
  - (ii) Similarly, let now  $s^k := -1$  and  $\alpha^k = 1/2^{k+1}$ . Again, write down the expression of the iterates  $x^k$  generated by the GLM and plot the pairs  $(x^k, f(x^k))$  on the graph of f. What do you observe? Show that  $\{x^k\}$  converges to 1.

(Comment: For plots, see the lecture slides on GLM-inexact linesearch. This problem illustrates that even when the search directions are descent in a generic linesearch method (GLM) and the stepsize ensures the function values at the iterates decrease, the GLM may not be convergent to a minimizer or stationary point of our objective f; the amount of decrease the stepsize gives in f in relation to its length is crucial. In particular, case i) above illustrates that the stepsize cannot be "too long" when it yields little decrease in f; case i) exemplifies that that stepsize cannot be "too short" as it cuts the direction too much and yields little progress. Recall lecture slides.)