
C6.2/B2. Continuous Optimization

Numerical Laboratory 1 (optional)

The first numerical lab will take place on Monday, February 4th, 16.00–17.00 or 17.00–18.00
in L5; it is entirely optional and there is no hand-in or marks. Please bring your laptop to
the lab, with Matlab on it if possible. The lab sessions will be held in Matlab (but you may
use other programming languages if you prefer).

The tasks for the first lab are given below. We encourage you to make progress on them
before the lab, if possible, so that you can make the most of the lab (and bring your work-
ings with you to the lab); but preliminary code will be provided to start you on the tasks
if you have not managed to do so.

(Algorithm implementation)

1. Implement Steepest Descent Method with Backtracking Armijo linesearch as described in the lec-
tures. You may want to start by implementing the linesearch routine first, at a given point x and
for a given descent direction s.

Please write your code for a general, not a specific, objective. You will need to carefully consider
how to provide an(y) objective and its derivatives to your algorithm/code. You may want to use
separate files for the objective values and gradients (and second derivatives) and explicitly code
their expressions (for each of the test functions you will use).

2. Using the same linesearch technique, modify your steepest descent code so that it uses the Newton
direction (instead of the steepest descent direction) on each iteration.

Add the following feature: at each iteration, check the positive definiteness or otherwise of the
second-derivative matrix (for example, by calculating its left-most eigenvalue). If this matrix is not
positive definite, then consider modifying the Hessian in such a way as to make it positive definite
and use this modified Hessian to calculate the search direction. You may want to use the techniques
1 or 2 on the ’Modified Newton’s method’ slides of Lecture 5.

(Test functions)

(a) Simple test functions and debugging: to check your codes are working, test them on very simple
functions such as f(x) = x2, x ∈ R; and f(x1, x2) = x2

1 + x2
2, (x1, x2) ∈ R2, for which you know the

solutions.

(b) Recalling questions on Problem Sheet 1 and Problem Sheet 2, test your code on the following
functions

f(x1, x2) =
1

2
(ax2

1 + x2
2),

where a > 0 and Rosenbrock’s function,

f(x1, x2) = 10(x2 − x2
1)2 + (1− x1)2.

In your tests, you may want to assess how the number of iterations varies with: the choice of starting
point, the choice of accuracy tolerance in the termination condition, the problem scaling. Assess
the local rate of convergence for both steepest descent and Newton’s method with linesearch.

(c) (advanced) For other low-dimensional standard optimization test functions, please see for example,
https://en.wikipedia.org/wiki/Test functions for optimization. You may want to apply
your codes to some of these functions.

1


