Problem Sheet 1

Question 1. Uniqueness of Solutions to ODEs. Let H be a real Hilbert space endowed with the scalar product (\cdot, \cdot). Show that the initial value problem for $y: \mathbb{R} \rightarrow H$, given by

$$
y^{\prime}(t)=f(t, y(t)) \text { for } t>0, \quad y(0)=y_{0},
$$

has at most one continuously differentiable solution on the interval $[0, T]$, provided that $f: \mathbb{R} \times H \rightarrow H$ is continuous and satisfies for some $L>0$

$$
\begin{equation*}
(f(t, y)-f(t, z), y-z) \leq L\|y-z\|^{2} \text { for all } y, z \in H \tag{1}
\end{equation*}
$$

[Hint: Use the product rule $\frac{d}{d t}(y(t), z(t))=\left(y^{\prime}(t), z(t)\right)+\left(z^{\prime}(t), y(t)\right)$ for functions $y, x: R \rightarrow H$ and Gronwall's Lemma.]

Give furthermore an example of a function f for which (1) is satisfied but for which the Lipschitzcondition of Picard's theorem does not hold.

Question 2. Euler-Lagrange Equations.

(i) Let $p \in(1, \infty)$ and $\Omega \subset \mathbb{R}^{n}$ be a domain. Derive the Euler-Lagrange equation for the functional

$$
I(v)=\int_{\Omega} \frac{1}{p}|\nabla v|^{p}-\frac{1}{4} v^{4} d x
$$

where $v: \Omega \rightarrow \mathbb{R}$ and $|\nabla v|=\sqrt{\left(\partial_{1} v\right)^{2}+\ldots+\left(\partial_{n} v\right)^{2}}$ once by using the formula derived in the lecture and once by direct computation of $\frac{d}{d t} I(v+t \phi), \phi \in C_{c}^{\infty}(\Omega)$.
(ii) Let $\Omega \subset \subset \mathbb{R}^{3}$ and $1 \leq p \leq 6$. Show that the functional

$$
E(u):=\frac{\|\nabla u\|_{L^{2}}^{2}}{\|u\|_{L^{p}}^{2}}
$$

is well defined for all $u \in H_{0}^{1}(\Omega), u \neq 0$ and satisfies $\inf \left\{E(u): u \in H_{0}^{1}(\Omega)\right\}>0$. Derive furthermore it's Euler-Lagrange equation.

Then consider

$$
E_{0}(u):=\int|\nabla u|^{2} d x
$$

and explain what condition has to be satisfied for a function $u \in H_{0}^{1}(\Omega)$ which minimises E_{0} in the set $M:=\left\{v:\|v\|_{L^{p}}=1\right\}$

Question 3. Counter-example to Brouwer's Fixed Point Theorem in an infinite dimensional space. Consider the real Hilbert Space

$$
l^{2}=\left\{\left(x_{i}\right)_{i \in \mathbb{N}} \text { such that } \sum_{i=0}^{\infty} x_{i}^{2}<\infty\right\} \text { with the norm }\|x\|_{l^{2}}=\sqrt{\sum_{i=0}^{\infty} x_{i}^{2}}
$$

Let B be its closed unit ball.

- Consider the map

$$
T: B \rightarrow B \text { given by } T(x)=\left(\sqrt{1-\|x\|_{l^{2}}^{2}}, x_{0}, x_{1}, x_{2}, \ldots\right)
$$

Show that T is continuous and does not have a fixed point.

- Construct a continuous retraction from B to ∂B.

Question 4. Application of Brouwer's FPT. Given a map $f \in C\left(\mathbb{R}^{n}: \mathbb{R}^{n}\right)$ such that $|f(x)| \leq$ $a+b|x|$, with $a \geq 0$ and and $0<b<1$, show that f has a fixed point.

