
Quantum Field Theory

Homework Assignment #2

due week 4, as arranged by your tutor

1. (More or less Peskin 2.1b)

(a) Construct the energy-momentum tensor for classical electromagnetism, using the
action given in the previous HW.

(b) The usual procedure does not give a symmetric tensor; i.e. Tµν 6= T νµ. A symmetric
one can be constructed using a tensor of the form ∂λK

λµν , where Kλµν is antisymmetric in
its first two indices. Show that ∂λK

λµν is (four) divergenceless, and so

T̂µν = Tµν + ∂λK
λµν

is conserved. Show that the same energy and momentum result from T̂µν as from Tµν .

(c) Show T̂µν is symmetric when

Kλµν = FµλAν .

(d) Find the energy and momentum densities resulting from T̂µν . Are these the same as
those coming from Tµν?

2. The purpose of this problem is to quantize the “Schrödinger field theory”, a non-Lorentz-
invariant field theory that arises in understanding Bose-Einstein condensates of cold atoms,
as I will explain later in the class. It also arises as the non-relativistic limit of the Klein-Gordon
field theory. The classical field theory has action

S =

∫
dt d3x

(
iψ∗∂tψ −

1

2M
∇ψ∗∇ψ − Vext(~x)ψ∗ψ

)
(1)

where ψ is a complex field.

(a) Derive the equations of motion for ψ∗ and ψ. You should see that they are Schrödinger
equation and its complex conjugate. But despite the use of the same Greek letter, ψ is not a
wavefunction – it is a field.

(b) Find the canonical momentum Π conjugate to ψ, and then derive the classical Hamil-
tonian. By the way, the canonical momentum conjugate to ψ∗ vanishes, so we do not quantize
it independently (it is a constraint, like a Lagrangian multiplier).

(c) Now set Vext = 0, and then quantize the theory. Do this by imposing the standard
canonical commutation relation on the operators Ψ̂(~x) and Π̂(~x), and then rewrite in terms
of ψ̂ and ψ̂∗, using the definition of Π̂. Then define

ψ̂(~x) =

∫
d3k

(2π)3
a~ke

i~k·~x

and work out the commutation relation [a~k, a
†
~k′

]. Then find the quantum Hamiltonian in

terms of the a~k and a†~k
.

(d) How is the ground state of the theory characterised? What are the excited states?
What are their energies?

(e) Show that the theory has a conserved charge like the complex Klein-Gordon theory,

and work out its form in the quantum theory in terms of the a~k and a†~k
. What is the physical

interpretation of this conserved charge?



3. (More or less Peskin 2.2) The purpose of this problem is to fill in some of the details of the
quantization of the complex K-G field theory, and to generalise the symmetry analysis. Write

ϕ(x) =

∫
d3k

(2π)3
1√
2ωk

(a~ke
−ik·x + b†~k

eik·x)

(a) Find Π(x) and Π†(x) in terms of a~k, b~k, a
†
~k

and b†~k
. Define the usual canonical

commutation relations for the latter, and them derive [Π(~x), ϕ(~x′)] and the others.

(b) Use these expressions to derive the classical expression for the conserved U(1) charge.
Then rewrite it in the quantum theory in terms of a~k, b~k and their hermitian conjugates.

(c) Consider now the case of two complex Klein-Gordon fields ϕ1(x), ϕ2(x) with the same
mass. Show that there are now four conserved charges, one given by the sum of the U(1)
charges, and the other three given by

Qj =
i

2

∫
d3x

(
ϕ∗a(σ

j)abπ
∗
b − πa(σj)abϕb

)
in the classical theory. The σa are the Pauli matrices, and the repeated indices summed over.
Show that these three do not commute with each other in the quantum theory, but instead
have the same commutation relations as the generators of angular momentum (this algebra
is known as su(2)).

4. The purpose of this problem is to prove several quantities are Lorentz invariant.

(a) First show that

δ(f(x)) =
∑
j

δ(x− xj)
|f ′(xj)|

where the xj are the points obeying f(xj) = 0.

(b) Show that both∫
d4k δ(kµk

µ −m2) and hence

∫
d3~k

1

2wk

are Lorentz invariant. Hints: you don’t need the explicit expression of a Lorentz transfor-
mation, you just need its definition, and the fact that det(AB) = det(A)det(B).

5. This is a problem in dimensional analysis with ~ = c = 1/(4πε0) = 1. Give all answers in the
number of powers of energy, so that e.g. mass has dimension 1, and time has dimension −1.

(a) What is the dimension of length? Force? Newton’s gravitional constant? Momentum?
Angular momentum? The electric charge? The electric field? The gauge field Aµ? The
action?

(b) Consider a scalar field φ in d spacetime dimensions (thus d−1 space dimensions). Its
Lagrangian density is

L =
1

2
∂µφ∂

µφ+
∑
n

anφ
n

where ∂µ is the obvious generalization of a four-vector to a d-vector. What is the dimension
of the field φ? You can check this by examining the canonical commutation relations. Find
the dimensions of the action, the Lagrangian density, and the coefficients an. A check on your
results is that the dimension of a2 should always be 2. Why is that?

(c) In d = 4, which an have positive dimension?


