Private-Key Encryption

Ali El Kaafarani^{1,2}

¹Mathematical Institute ² PQShield Ltd.

Outline

- Historical Ciphers
- Probability Review
- 3 Security Definitions: Perfect Secrecy
- One Time Pad (OTP)

Course Main Reference

Example

Plaintext: ABCD · · · WXYZ.

• Shift:+3 mod 26

• Ciphertext: DEFG · · · ZABC.

Example

- Plaintext: ABCD · · · WXYZ.
- Shift:+3 mod 26
- Ciphertext: DEFG · · · ZABC.

Cryptanalysis:

• Brute Force (trying every possible key): key space size is $|\mathcal{K}| = 26$.

Example

- Plaintext: ABCD · · · WXYZ.
- Shift:+3 mod 26
- Ciphertext: DEFG · · · ZABC.

- Brute Force (trying every possible key): key space size is $|\mathcal{K}| = 26$.
- Sufficient key-space principle: Any secure symmetric key encryption scheme must have a key space that is sufficiently large to make an exhaustive-search attack infeasible (e.g. |K| ≥ 2⁷⁰).

Example

- Plaintext: ABCD · · · WXYZ.
- Shift:+3 mod 26
- Ciphertext: DEFG · · · ZABC.

- Brute Force (trying every possible key): key space size is $|\mathcal{K}| = 26$.
- Sufficient key-space principle: Any secure symmetric key encryption scheme must have a key space that is sufficiently large to make an exhaustive-search attack infeasible (e.g. $|\mathcal{K}| \geq 2^{70}$).
- Is it a sufficient condition?

Example

- Plaintext: ABCZ
- Substitution: (A \rightarrow T, B \rightarrow N, C \rightarrow L, ..., Z \rightarrow O)
- Ciphertext:TNLO

Example

- Plaintext: ABCZ
- Substitution: (A \rightarrow T, B \rightarrow N, C \rightarrow L, ..., Z \rightarrow O)
- Ciphertext:TNLO

Cryptanalysis:

• Brute Force: Key space size is $|\mathcal{K}| = 26! \approx 2^{88}$.

Example

- Plaintext: ABCZ
- Substitution: (A \rightarrow T, B \rightarrow N, C \rightarrow L, ..., Z \rightarrow O)
- Ciphertext:TNLO

- Brute Force: Key space size is $|\mathcal{K}| = 26! \approx 2^{88}$.
- Frequency analysis:
 - o Frequency of English letters

Example

- Plaintext: ABCZ
- Substitution: (A \rightarrow T, B \rightarrow N, C \rightarrow L, ..., Z \rightarrow O)
- Ciphertext:TNLO

- Brute Force: Key space size is $|\mathcal{K}| = 26! \approx 2^{88}$.
- Frequency analysis:
 - Frequency of English letters
 - o Frequency of pairs (or more) of letters, e.g. digrams, trigrams, etc.

Vigenere Cipher (1553)

Example

· Poly-alphabetic shift:

Plaintext *m*: TOBEORNOTTOBE key *k*:(+ mod 26) CRYPTOCRYPTOC

Ciphertext c: VFZTHFPFRIHPG

Vigenere Cipher (1553)

Example

· Poly-alphabetic shift:

Plaintext *m*: TOBEORNOTTOBE key *k*:(+ mod 26) CRYPTOCRYPTOC

Ciphertext *c*: VFZTHFPFRIHPG

- If the length of the key, say n, is known, then break ciphertext into blocks of size n, and solve each block similar to Caesar cipher and using letter-frequency analysis.
- o If n is not known, use Kasiski method (Kasiski 1863) or *index of coincidence method* to find n, and do the rest as in the first case. (What if n = |c| = |k|?)

Kerckhoff's Principle (1883):

Definition

The cipher must NOT be required to be secret and it must be able to fall into the hands of the enemy without inconvenience.

Modern Cryptography:

Kerckhoff's Principle (1883):

Definition

The cipher must NOT be required to be secret and it must be able to fall into the hands of the enemy without inconvenience.

Modern Cryptography:

 The encryption scheme's algorithms should be public. (Standardized, etc.)

Outline

- Historical Ciphers
- 2 Probability Review
- Security Definitions: Perfect Secrecy
- 4 One Time Pad (OTP)

Discrete Probability

Let Ω be the set of outcomes (sample space), define $\Pr: \Omega \to [0,1]$ such that $\Pr(\omega)$ ="probability that outcome ω occurs". Note that $0 \leq \Pr(\omega) \leq 1$, $\forall \omega \in \Omega$.

• Let
$$A \subseteq \Omega$$
, $Pr(A) = \sum_{\omega \in A} Pr(w)$.

- Union Formula: $Pr(A \cup B) = Pr(A) + Pr(B) Pr(A \cap B)$.
- Union Bound: $Pr(A \cup B) \leq Pr(A) + Pr(B)$.
- Conditional Probability: $Pr(A|B) = Pr(A \cap B)/Pr(B)$.
- *A* and *B* are independent $\Leftrightarrow \Pr(A \cap B) = \Pr(A) \cdot \Pr(B)$.
- Bayes' Theorem: $\Pr(A|B) = \frac{\Pr(A) \cdot \Pr(B|A)}{\Pr(B)}$

Random Variables

- A coin is tossed 100 times. The variable X is the number of tails that are noted. X can only take the values 0, 1, ..., 100. The variable X is called a discrete random variable.
- A random variable is a function X : Ω → S that associates a unique numerical value with every outcome of an experiment.
- The probability distribution of a discrete random variable *X* is a list of probabilities associated with each of its possible values.
- If these probabilities are equal, the distribution is called a Uniform distribution over S.

•
$$\Pr(X = x) = \sum_{X(\omega) = x} \Pr(\omega).$$

Expected Value and Variance

- The expected value E(X) of a random variable X indicates its average or central value; $E(X) = \sum_{\omega \in \Omega} X(\omega) \Pr(\omega)$,
- Property: E(X + Y) = E(X) + E(Y).
- The Variance V(X) is a measure of the "spread" of a distribution about its average value E(X);

$$V(X) = E((X - E(X))^{2}) = E(X^{2}) - E(X)^{2}.$$

Statistical Distance/Indistinguishability

Definition

Statistical distance

Let X and Y be two random variables distributed according to the distributions D_1 and D_2 respectively. The statistical distance between X and Y can be defined as:

$$\Delta(X, Y) = \frac{1}{2} \sum_{v \in X \cup Y} |\Pr(X = v) - \Pr(Y = v)|$$

Definition

Statistical Indistinguishability

Let X and Y be two random variables distributed according to distributions D_1 and D_2 . We say that D_1 and D_2 are statistically indistinguishable if $\Delta(X,Y)$ is negligible.

Entropy

Figure: Unsurprised women watching the ticker tape in 1918.

https:

//plus.maths.org/content/information-surprise

Entropy

Definition

Let (\Pr, Ω) be a discrete probability on a sample space Ω where $A \subseteq \Omega$. We define the **information of A** as

$$I(A) = -\log_2 \Pr(A)$$
.

Definition

The entropy H(X) of a discrete random variable X on a sample space Ω is the average amount of information conveyed by it.

$$H(X) = E(I(X=x)) = -\sum_{x} \Pr(X=x) \cdot \log_2 \Pr(X=x).$$

• Entropy Demo:

http://www.math.ucsd.edu/~crypto/java/ENTROPY/

Entropy

Theorem

If *X* is a random variable, $X : \Omega \to S$, then $H(X) \leq \log(|S|)$.

Theorem

Minimum entropy

$$H(X) \ge k \Leftrightarrow \forall x, \Pr(X = x) \le 2^{-k}$$

Definition

Negligible function

A function ϵ is negligible iff $\forall c \in \mathbb{N} \ \exists n_0 \in \mathbb{N}$ such that

$$\forall n \geq n_0, \epsilon(n) \leq n^{-c}$$
.

Examples

- Maximum entropy is achieved when all events are equally likely, in this case H = log(|S|).
- Minimum entropy happens when one event is certain and the others are impossible, in this case H = 0.
- In theory: 2^{-n} , $2^{-\sqrt{n}}$ and $n^{-\log n}$ are negligible functions.
- In practice: $\epsilon \geq 1/2^{30}$ is non-negligible, whereas $\epsilon \leq 1/2^{80}$ is negligible.

Outline

- **1** Historical Ciphers
- 2 Probability Review
- 3 Security Definitions: Perfect Secrecy
- 4 One Time Pad (OTP)

Syntax of Private Key Encryption Schemes

Any encryption scheme consists of three algorithms:

- $k \leftarrow \text{KeyGen}(n)$: It takes the security parameters n and outputs the key k. We assume that $|k| \ge n$.
- c ← Enc(k, m ∈ M): An algorithm (often randomized) that takes the encryption key k and the message and outputs the ciphertext c.
- m ← Dec(k, c): An algorithm (always deterministic) that takes the key and ciphertext and gives back the message.

Definition

Correctness: An encryption scheme is correct iff

$$\forall k \in \mathcal{K}, \forall m \in \mathcal{M}, \mathsf{Dec}(k, \mathsf{Enc}(k, m)) = m.$$

What is a secure encryption scheme (security goals)?

What is a secure encryption scheme (security goals)?

Adversaries cannot compute the plaintext.

What is a secure encryption scheme (security goals)?

- Adversaries cannot compute the plaintext.
- Adversaries cannot compute the secret key.

What is a secure encryption scheme (security goals)?

- Adversaries cannot compute the plaintext.
- Adversaries cannot compute the secret key.
- Adversaries cannot compute information about the plaintext.

What is a secure encryption scheme (security goals)?

- Adversaries cannot compute the plaintext.
- Adversaries cannot compute the secret key.
- Adversaries cannot compute information about the plaintext.
- Adversaries cannot compute any function about the plaintext.

What is a secure encryption scheme (security goals)?

- Adversaries cannot compute the plaintext.
- Adversaries cannot compute the secret key.
- Adversaries cannot compute information about the plaintext.
- Adversaries cannot compute any function about the plaintext.

On the other hand: what are the adversaries' abilities (or threat models)?

Ciphertext-only attack: one single ciphertext c.

What is a secure encryption scheme (security goals)?

- Adversaries cannot compute the plaintext.
- Adversaries cannot compute the secret key.
- Adversaries cannot compute information about the plaintext.
- Adversaries cannot compute any function about the plaintext.

- Ciphertext-only attack: one single ciphertext c.
- Known Plaintext attack: the adversary learns a number of pairs of (c_i, m_i) generated using some key.

What is a secure encryption scheme (security goals)?

- Adversaries cannot compute the plaintext.
- Adversaries cannot compute the secret key.
- Adversaries cannot compute information about the plaintext.
- Adversaries cannot compute any function about the plaintext.

- Ciphertext-only attack: one single ciphertext c.
- Known Plaintext attack: the adversary learns a number of pairs of (c_i, m_i) generated using some key.
- Chosen-plaintext attack (CPA): same as above, but the adversary gets to choose the plaintexts this time.

What is a secure encryption scheme (security goals)?

- Adversaries cannot compute the plaintext.
- Adversaries cannot compute the secret key.
- Adversaries cannot compute information about the plaintext.
- Adversaries cannot compute any function about the plaintext.

- Ciphertext-only attack: one single ciphertext c.
- Known Plaintext attack: the adversary learns a number of pairs of (c_i, m_i) generated using some key.
- Chosen-plaintext attack (CPA): same as above, but the adversary gets to choose the plaintexts this time.
- Chosen-ciphertext attack (CCA): now, he additionally gets the decryption of ciphertexts of its choice.

Perfect Secrecy (Shannon 1949)

Perfect Secrecy (Shannon 1949)

• "The ciphertext should reveal no information about the plaintext"

Perfect Secrecy (Shannon 1949)

- "The ciphertext should reveal no information about the plaintext"
- Also called *information theoretic security*.

Definition

Perfect Secrecy

For every probability distribution over the message space \mathcal{M} ,

$$\forall m \in \mathcal{M}, \forall c \in \mathcal{C} \text{ for which } \Pr[C = c] > 0 \text{ we have;}$$

$$\Pr[M = m | C = c] = \Pr[M = m]$$

equivalently,

$$\Pr[C = c | M = m] = \Pr[C = c]$$

Perfect Indistinguishability

Perfect Indistinguishability Experiment $\mathsf{PrivK}_{\mathcal{A},E}^{\mathsf{perfect-ind}}$

Challenger Ch

Adversary A

$$\leftarrow^{m_0,m_1,|m_0|=|m_1|}$$

$$b \leftarrow \$ \{0, 1\}$$

$$\xrightarrow{c = \mathsf{Enc}(k, m_b)} \mathsf{Outputs} \mathsf{ his guess } b'$$

Definition

An encryption scheme is perfectly indistinguishable if for every adversary A the following holds:

$$\Pr[\mathsf{PrivK}^{\mathsf{perfect-IND}}_{\mathcal{A}.E} = 1] = 1/2$$

Where PrivK_{A,E}^{perfect-IND} = 1 if b' = b, and 0 otherwise.

Perfect Indistinguishability

Theorem

Perfect indistinguishability

An encryption scheme (KeyGen, Enc, Dec) has perfect secrecy iff for every probability distribution over \mathcal{M} ,

$$\forall m_0, m_1 \in \mathcal{M} \text{ s.t. } |m_0| = |m_1|, \forall c \in \mathcal{C},$$

$$\Pr[C = c | M = m_0] = \Pr[C = c | M = m_1]$$

Proof.

$$(\Rightarrow): \Pr[C=c|M=m_0] = \Pr[C=c] = \Pr[C=c|M=m_1]$$

 $(\Leftarrow):$

$$\Pr[C = c] = \sum_{m} \Pr[C = c | M = m] \cdot \Pr[M = m]$$
$$= \sum_{m} \Pr[C = c | M = m_0] \cdot \Pr[M = m]$$
$$= \Pr[C = c | M = m_0] \cdot \sum_{m} \Pr[M = m]$$
$$= \Pr[C = c | M = m_0]$$

which is correct for any m_0

Outline

- Historical Ciphers
- Probability Review
- 3 Security Definitions: Perfect Secrecy
- One Time Pad (OTP)

One Time Pad (Vernam 1917 or some 35 years earlier!)

Fix an integer n > 0. Let $\mathcal{M} = \mathcal{C} = \mathcal{K} = \{0, 1\}^n$.

- **Key Generation:** KeyGen(n) : It produces a random bit string of length n, i.e. $k \in \mathcal{K}$.
- Encryption: Enc : $\{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$, such that $c \leftarrow \operatorname{Enc}(k,m) = k \oplus m$.
- **Decryption:** Dec : $\{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$, such that $m \leftarrow \mathsf{Dec}(k,c) = k \oplus c$.

One Time Pad (Vernam 1917 or some 35 years earlier!)

Fix an integer n > 0. Let $\mathcal{M} = \mathcal{C} = \mathcal{K} = \{0, 1\}^n$.

- **Key Generation:** KeyGen(n) : It produces a random bit string of length n, i.e. $k \in \mathcal{K}$.
- Encryption: Enc : $\{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$, such that $c \leftarrow \operatorname{Enc}(k,m) = k \oplus m$.
- **Decryption:** Dec : $\{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$, such that $m \leftarrow \mathsf{Dec}(k,c) = k \oplus c$.

It was used between the White House and the Kremlin during the Cold War!

Security of OTP

Theorem

The one time pad (OTP) encryption scheme is perfectly secret.

Proof.

$$Pr[C = c | M = m] = Pr[M \oplus k = c | M = m]$$
$$= Pr[m \oplus k = c]$$
$$= Pr[k = m \oplus c]$$
$$= \frac{1}{2^n}$$

because the key k is a uniform n-bit string. Therefore, For any m_0, m_1 , we have $\Pr[C = c | M = m_0] = \frac{1}{2^n} = \Pr[C = c | M = m_1]$

27 of 33

OTP has perfect secrecy, but is it practical?

Theorem

If an encryption scheme *E* is perfectly secret, then $|\mathcal{K}| \geq |\mathcal{M}|$.

OTP has perfect secrecy, but is it practical?

Theorem

If an encryption scheme *E* is perfectly secret, then $|\mathcal{K}| \geq |\mathcal{M}|$.

Proof.

Assume that $|\mathcal{K}| < |\mathcal{M}|$, we will show that E is not perfectly secure. We first fix a uniform distribution over \mathcal{M} , and let

$$\mathcal{M}(c) = \{ m \mid m = \mathsf{Dec}(k, c) \text{ for some } k \in \mathcal{K} \}$$

but $|\mathcal{M}(c)| \leq |\mathcal{K}|$, then there exists $m' \in \mathcal{M}$ s.t. $m' \notin \mathcal{M}(c)$. Therefore, $\Pr[M = m' | C = c] = 0 \neq \Pr[M = m']$

Is there a way to make OTP practical?

From Perfect to Computational Security

 Perfect secrecy: No leakage of information about an encrypted message even to an eavesdropper with unlimited computational power.

From Perfect to Computational Security

- Perfect secrecy: No leakage of information about an encrypted message even to an eavesdropper with unlimited computational power.
- Computational secrecy: an encryption scheme is still considered to be secure even if it leaks a very small amount of information to eavesdroppers with *limited power*.

From Perfect to Computational Security

- Perfect secrecy: No leakage of information about an encrypted message even to an eavesdropper with unlimited computational power.
- Computational secrecy: an encryption scheme is still considered to be secure even if it leaks a very small amount of information to eavesdroppers with *limited power*.
- Real-world application: happy with a scheme that leaks information with probability at most 2⁻⁶⁰ over 200 years using fastest supercomputers!

Computational Security

Concrete version:

Definition

An encryption scheme is (t,ϵ) -secure if any adversary running for time at most t succeeds in breaking the scheme with probability at most ϵ .

Asymptotic version:

Definition

An encryption scheme is secure if any *probabilistic* polynomial-time algorithm in n (PPT) succeeds in breaking the scheme with at most negligible probability (in n).

Further Reading (1)

- Nadhem J AlFardan, Daniel J Bernstein, Kenneth G Paterson, Bertram Poettering, and Jacob CN Schuldt. On the security of RC4 in TLS. In USENIX Security, pages 305–320, 2013.
- Boaz Barak and Shai Halevi. A model and architecture for pseudo-random generation with applications to/dev/random. In Proceedings of the 12th ACM conference on Computer and
 - In Proceedings of the 12th ACM conference on Computer and communications security, pages 203–212. ACM, 2005.
- Daniel J Bernstein.
 The Salsa20 Family of Stream Ciphers.
 In New stream cipher designs, pages 84–97. Springer, 2008.

Further Reading (2)

- Lenore Blum, Manuel Blum, and Mike Shub.

 A simple unpredictable pseudo-random number generator.

 SIAM Journal on computing, 15(2):364–383, 1986.
- Christian Cachin.

 Entropy measures and unconditional security in cryptography.

 PhD thesis, SWISS FEDERAL INSTITUTE OF

 TECHNOLOGY ZURICH, 1997.
- Scott Fluhrer, Itsik Mantin, and Adi Shamir.
 Weaknesses in the key scheduling algorithm of RC4.
 In Selected areas in cryptography, pages 1–24. Springer, 2001.

Further Reading (3)

Christina Garman, Kenneth G Paterson, and Thyla van der Merwe.

Attacks only get better: Password recovery attacks against RC4 in TLS.

2015.

Itsik Mantin and Adi Shamir.

A practical attack on broadcast RC4.

In Fast Software Encryption, pages 152–164. Springer, 2002.