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Caesar Cipher (100-44BC)

Example
• Plaintext: ABCD · · · WXYZ.
• Shift:+3 mod 26
• Ciphertext: DEFG · · · ZABC.

Cryptanalysis:

• Brute Force (trying every possible key): key space size is
|K| = 26.

• Sufficient key-space principle: Any secure symmetric key
encryption scheme must have a key space that is sufficiently
large to make an exhaustive-search attack infeasible (e.g.
|K| ≥ 270).

• Is it a sufficient condition?
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Substitution Cipher (mono-alphabetic)

Example
• Plaintext: ABCZ
• Substitution: (A→ T, B→ N, C→ L, . . . , Z→ O )
• Ciphertext:TNLO

Cryptanalysis:

• Brute Force: Key space size is |K| = 26! ≈ 288.

• Frequency analysis:
◦ Frequency of English letters
◦ Frequency of pairs (or more) of letters, e.g. digrams, trigrams, etc.
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Substitution Cipher (mono-alphabetic)
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Vigenere Cipher (1553)

Example
• Poly-alphabetic shift:

Plaintext m: TOBEORNOTTOBE
key k:(+ mod 26) CRYPTOCRYPTOC

Ciphertext c: VFZTHFPFRIHPG

• Cryptanalysis:

◦ If the length of the key, say n, is known, then break ciphertext into
blocks of size n, and solve each block similar to Caesar cipher and
using letter-frequency analysis.

◦ If n is not known, use Kasiski method (Kasiski 1863) or index of
coincidence method to find n, and do the rest as in the first case.
(What if n = |c| = |k|?)
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Kerckhoff’s Principle (1883):

Definition
The cipher must NOT be required to be secret and it must be able
to fall into the hands of the enemy without inconvenience.

Modern Cryptography:

• The encryption scheme’s algorithms should be public.
(Standardized, etc.)
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Discrete Probability

Let Ω be the set of outcomes (sample space), define
Pr : Ω→ [0, 1] such that Pr(ω) =“probability that outcome ω
occurs”. Note that 0 ≤ Pr(ω) ≤ 1, ∀ω ∈ Ω.

• Let A ⊆ Ω, Pr(A) =
∑
ω∈A

Pr(w).

• Union Formula: Pr(A ∪ B) = Pr(A) + Pr(B)− Pr(A ∩ B).
• Union Bound: Pr(A ∪ B) ≤ Pr(A) + Pr(B).
• Conditional Probability: Pr(A|B) = Pr(A ∩ B)/Pr(B).
• A and B are independent⇔ Pr(A ∩ B) = Pr(A) · Pr(B).

• Bayes’ Theorem: Pr(A|B) =
Pr(A) · Pr(B|A)

Pr(B)
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Random Variables

• A coin is tossed 100 times. The variable X is the number of tails
that are noted. X can only take the values 0, 1, ..., 100. The
variable X is called a discrete random variable.

• A random variable is a function X : Ω→ S that associates a
unique numerical value with every outcome of an experiment.

• The probability distribution of a discrete random variable X is a
list of probabilities associated with each of its possible values.

• If these probabilities are equal, the distribution is called a
Uniform distribution over S.

• Pr(X = x) =
∑

X(ω)=x

Pr(ω).
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Expected Value and Variance

• The expected value E(X) of a random variable X indicates its
average or central value; E(X) =

∑
ω∈Ω

X(ω) Pr(ω),

• Property: E(X + Y) = E(X) + E(Y).

• The Variance V(X) is a measure of the “spread” of a distribution
about its average value E(X);
V(X) = E((X − E(X))2) = E(X2)− E(X)2.
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Statistical Distance/Indistinguishability

Definition
Statistical distance
Let X and Y be two random variables distributed according to the
distributions D1 and D2 respectively. The statistical distance
between X and Y can be defined as:

∆(X,Y) =
1
2

∑
v∈X∪Y

|Pr(X = v)− Pr(Y = v)|

Definition
Statistical Indistinguishability
Let X and Y be two random variables distributed according to
distributions D1 and D2. We say that D1 and D2 are statistically
indistinguishable if ∆(X,Y) is negligible.
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Entropy

Figure: Unsurprised women watching the ticker tape in 1918.

https:
//plus.maths.org/content/information-surprise
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Entropy

Definition
Let (Pr,Ω) be a discrete probability on a sample space Ω where
A ⊆ Ω. We define the information of A as

I(A) = − log2 Pr(A).

Definition
The entropy H(X) of a discrete random variable X on a sample
space Ω is the average amount of information conveyed by it.

H(X) = E(I(X = x)) = −
∑

x

Pr(X = x) · log2 Pr(X = x).

• Entropy Demo:
http://www.math.ucsd.edu/~crypto/java/ENTROPY/
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Entropy

Theorem
If X is a random variable, X : Ω→ S, then H(X) ≤ log(|S|).

Theorem
Minimum entropy
H(X) ≥ k⇔ ∀x,Pr(X = x) ≤ 2−k

Definition
Negligible function
A function ε is negligible iff ∀c ∈ N ∃n0 ∈ N such that
∀n ≥ n0, ε(n) ≤ n−c.
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Examples

• Maximum entropy is achieved when all events are equally likely,
in this case H = log(|S|).

• Minimum entropy happens when one event is certain and the
others are impossible, in this case H = 0.

• In theory: 2−n, 2−
√

n and n− log n are negligible functions.
• In practice: ε ≥ 1/230 is non-negligible, whereas ε ≤ 1/280 is

negligible.
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Syntax of Private Key Encryption Schemes

Any encryption scheme consists of three algorithms:
• k← KeyGen(n): It takes the security parameters n and outputs

the key k. We assume that |k| ≥ n.
• c← Enc(k,m ∈M): An algorithm (often randomized) that takes

the encryption key k and the message and outputs the
ciphertext c.

• m← Dec(k, c): An algorithm (always deterministic) that takes
the key and ciphertext and gives back the message.

Definition
Correctness: An encryption scheme is correct iff

∀k ∈ K, ∀m ∈M,Dec(k,Enc(k,m)) = m.
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Security Definitions
What is a secure encryption scheme (security goals)?

• Adversaries cannot compute the plaintext.
• Adversaries cannot compute the secret key.
• Adversaries cannot compute information about the plaintext.
• Adversaries cannot compute any function about the plaintext.
On the other hand: what are the adversaries’ abilities (or threat
models)?
• Ciphertext-only attack: one single ciphertext c.
• Known Plaintext attack: the adversary learns a number of pairs

of (ci,mi) generated using some key.
• Chosen-plaintext attack (CPA): same as above, but the

adversary gets to choose the plaintexts this time.
• Chosen-ciphertext attack (CCA): now, he additionally gets the

decryption of ciphertexts of its choice.
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Perfect Secrecy (Shannon 1949)

• “The ciphertext should reveal no information about the plaintext”
• Also called information theoretic security.

Definition
Perfect Secrecy
For every probability distribution over the message spaceM,
∀m ∈M,∀c ∈ C for which Pr[C = c] > 0 we have;

Pr[M = m|C = c] = Pr[M = m]

equivalently,
Pr[C = c|M = m] = Pr[C = c]
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Perfect Indistinguishability

Perfect Indistinguishability Experiment PrivKperfect−ind
A,E

Challenger Ch Adversary A
m0,m1,|m0|=|m1|←−−−−−−−−−

b←$ {0, 1}
c=Enc(k,mb)−−−−−−−→ Outputs his guess b′

Definition
An encryption scheme is perfectly indistinguishable if for every
adversary A the following holds:

Pr[PrivKperfect−IND
A,E = 1] = 1/2

Where PrivKperfect−IND
A,E = 1 if b′ = b, and 0 otherwise.
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Perfect Indistinguishability

Theorem
Perfect indistinguishability
An encryption scheme (KeyGen,Enc,Dec) has perfect secrecy iff
for every probability distribution overM,
∀m0,m1 ∈M s.t. |m0| = |m1|, ∀c ∈ C,
Pr[C = c|M = m0] = Pr[C = c|M = m1]
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Proof.
(⇒) : Pr[C = c|M = m0] = Pr[C = c] = Pr[C = c|M = m1]
(⇐) :

Pr[C = c] =
∑

m

Pr[C = c|M = m] · Pr[M = m]

=
∑

m

Pr[C = c|M = m0] · Pr[M = m]

= Pr[C = c|M = m0] ·
∑

m

Pr[M = m]

= Pr[C = c|M = m0]

which is correct for any m0
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One Time Pad (Vernam 1917 or some 35 years
earlier!)

Fix an integer n > 0. LetM = C = K = {0, 1}n.
• Key Generation: KeyGen(n) : It produces a random bit string

of length n, i.e. k ∈ K.
• Encryption: Enc : {0, 1}n × {0, 1}n → {0, 1}n, such that

c← Enc(k,m) = k ⊕ m.
• Decryption: Dec : {0, 1}n × {0, 1}n → {0, 1}n, such that

m← Dec(k, c) = k ⊕ c.

It was used between the White House and the Kremlin during the
Cold War!
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Security of OTP

Theorem
The one time pad (OTP) encryption scheme is perfectly secret.

Proof.

Pr[C = c|M = m] = Pr[M ⊕ k = c|M = m]

= Pr[m⊕ k = c]

= Pr[k = m⊕ c]

=
1
2n

because the key k is a uniform n-bit string. Therefore, For any

m0,m1, we have Pr[C = c|M = m0] =
1
2n = Pr[C = c|M = m1]
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OTP has perfect secrecy, but is it practical?

Theorem
If an encryption scheme E is perfectly secret, then |K| ≥ |M|.

Proof.
Assume that |K| < |M|, we will show that E is not perfectly
secure. We first fix a uniform distribution overM, and let

M(c) = {m | m = Dec(k, c) for some k ∈ K}

but |M(c)| ≤ |K|, then there exists m′ ∈M s.t. m′ 6∈ M(c).
Therefore, Pr[M = m′|C = c] = 0 6= Pr[M = m′]

Is there a way to make OTP practical?
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From Perfect to Computational Security

• Perfect secrecy: No leakage of information about an encrypted
message even to an eavesdropper with unlimited computational
power.

• Computational secrecy: an encryption scheme is still
considered to be secure even if it leaks a very small amount of
information to eavesdroppers with limited power.

• Real-world application: happy with a scheme that leaks
information with probability at most 2−60 over 200 years using
fastest supercomputers!
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Computational Security

Concrete version:

Definition
An encryption scheme is (t, ε)-secure if any adversary running for
time at most t succeeds in breaking the scheme with probability at
most ε.

Asymptotic version:

Definition
An encryption scheme is secure if any probabilistic
polynomial-time algorithm in n (PPT) succeeds in breaking the
scheme with at most negligible probability (in n).
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