B1.2 Set Theory (2024-25)
Main content blocks
- Lecturer: Profile: Martin Bays
Course information
General Prerequisites:
There are no formal prerequisites, but familiarity with some basic mathematical objects and notions such as: the rational and real number fields; the idea of surjective, injective and bijective functions, inverse functions, order relations; the notion of a continuous function of a real variable, sequences, series, and convergence, and the definitions of basic abstract structures such as fields, vector spaces, and groups (all covered in Mathematics I and II in Prelims) will be helpful at points.
Course Term: Hilary
Course Lecture Information: 16 lectures
Course Weight: 1
Course Level: H
Assessment Type: Written Examination
Course Overview:
Introduce sets and their properties as a unified way of treating mathematical structures. Emphasise the difference between an intuitive collection and a formal set. Define (infinite) cardinal and ordinal numbers and investigate their properties. Frame the Axiom of Choice and its equivalent forms and study their implications.
Learning Outcomes:
Students will have a sound knowledge of set theoretic language and be able to use it to codify mathematical objects. They will have an appreciation of the notion of infinity and arithmetic of the cardinals and ordinals. They will have developed a deep understanding of the Axiom of Choice, Zorn's Lemma and the Well-Ordering Principle.
Course Synopsis:
What is a set? Introduction to the basic axioms of set theory. Ordered pairs, cartesian products, relations and functions. Axiom of Infinity and the construction of the natural numbers; induction and the Recursion Theorem.
Cardinality; the notions of finite and countable and uncountable sets; Cantor's Theorem on power sets. The Tarski Fixed Point Theorem. The Schröder-Bernstein Theorem. Basic cardinal arithmetic.
Well-orders. Comparability of well-orders. Ordinal numbers. Transfinite induction; transfinite recursion [informal treatment only]. Ordinal arithmetic.
The Axiom of Choice, Zorn's Lemma, the Well-ordering Principle; comparability of cardinals. Equivalence of WO, CC, AC and ZL. Cardinal numbers.
Cardinality; the notions of finite and countable and uncountable sets; Cantor's Theorem on power sets. The Tarski Fixed Point Theorem. The Schröder-Bernstein Theorem. Basic cardinal arithmetic.
Well-orders. Comparability of well-orders. Ordinal numbers. Transfinite induction; transfinite recursion [informal treatment only]. Ordinal arithmetic.
The Axiom of Choice, Zorn's Lemma, the Well-ordering Principle; comparability of cardinals. Equivalence of WO, CC, AC and ZL. Cardinal numbers.
Section outline
-
Lecture notes; small changes are likely to be made to these throughout the term, and each section will be frozen soon after it has been lectured.
Problem sheets will appear below; the nth problem sheet is for classes in Weeks 2n and 2n+1, and will appear by Monday of Week 2n-1. If you want to preview some likely questions on later sheets, please see the materials for the HT24 iteration of the course.
Hand-in deadline is 48h before the class, weekends excluded (so Friday for a Tuesday class), unless the class tutor says otherwise.
-
-
Registration start: Monday, 13 January 2025, 12:00 PMRegistration end: Friday, 14 February 2025, 12:00 PM
-
Class Tutor's Comments Assignment
Class tutors will use this activity to provide overall feedback to students at the end of the course.
-