A2: Metric Spaces and Complex Analysis (2022-23)
Main content blocks
- Lecturer: Profile: Dmitry Belyaev
- Lecturer: Profile: Panagiotis Papazoglou
In these lectures we begin by introducing students to the language of topology before using it in the exposition of the theory of (holomorphic) functions of a complex variable.
The central aim of the lectures is to present Cauchy's Theorem and its consequences, particularly series expansions of holomorphic functions, the calculus of residues and its applications.
The course concludes with an account of the conformal properties of holomorphic functions and applications to mapping regions.
Basic definitions: metric spaces, isometries, continuous functions ϵ−δϵ−δ definition, homeomorphisms, open sets, closed sets. Examples of metric spaces, including metrics derived from a norm on a real vector space, particularly l1,l2,l∞l1,l2,l∞ norms on RnRn, the sup norm on the bounded real-valued functions on a set, and on the bounded continuous real-valued functions on a metric space. The characterisation of continuity in terms of the pre-image of open sets or closed sets. The limit of a sequence of points in a metric space. A subset of a metric space inherits a metric. Discussion of open and closed sets in subspaces. The closure of a subset of a metric space. [3]
Completeness (but not completion). Completeness of the space of bounded real-valued functions on a set, equipped with the norm, and the completeness of the space of bounded continuous real-valued functions on a metric space, equipped with the metric. Lipschitz maps and contractions. Contraction Mapping Theorem. [2.5]
Connected metric spaces, path-connectedness. Closure of a connected space is connected, union of connected sets is connected if there is a non-empty intersection, continuous image of a connected space is connected. Path-connectedness implies connectedness. Connected open subset of a normed vector space is path-connected. [2]
Definition of sequential compactness and proof of basic properties of compact sets. Preservation of compactness under continuous maps, equivalence of continuity and uniform continuity for functions on a compact set. Equivalence of sequential compactness with being complete and totally bounded. The Arzela-Ascoli theorem (proof non-examinable). Open cover definition of compactness. Heine-Borel (for the interval only) and proof that compactness implies sequential compactness (statement of the converse only). [2.5]
Complex Analysis (22 lectures)
Basic geometry and topology of the complex plane, including the equations of lines and circles. Extended complex plane, Riemann sphere, stereographic projection. Möbius transformations acting on the extended complex plane. Möbius transformations take circlines to circlines. [3]
Complex differentiation. Holomorphic functions. Cauchy-Riemann equations (including z,z¯z,z¯ version). Real and imaginary parts of a holomorphic function are harmonic. [2]
Recap on power series and differentiation of power series. Exponential function and logarithm function. Fractional powers — examples of multifunctions. The use of cuts as method of defining a branch of a multifunction. [3]
Path integration. Winding numbers. Cauchy's Theorem. (Sketch of proof only — students referred to various texts for proof.) Fundamental Theorem of Calculus in the path integral/holomorphic situation. [2]
Cauchy's Integral formulae. Taylor expansion. Liouville's Theorem. Identity Theorem. Morera's Theorem. Homology form of Cauchy’s Theorem.[4]
Laurent's expansion. Classification of isolated singularities. Calculation of principal parts, particularly residues. The argument principle and applications. [2]
Residue Theorem. Evaluation of integrals by the method of residues (straightforward examples only but to include the use of Jordan's Lemma and simple poles on contour of integration). [3]
Conformal mappings. Riemann mapping theorem (no proof), Möbius transformations, exponential functions, fractional powers; mapping regions (not Christoffel transformations or Joukowski's transformation). [3]
Section outline
-
-
Questions on the Complex Analysis part of the course. Please feel free to post questions/answers/corrections to the notes.
-
-
The first example sheet, covering material from Chapters 1, 2 and 3 of the Metric Spaces notes.
-
The second example sheet, covering material from Chapters 4, 5 and 6 of the Metric Spaces notes.
-
The third example sheet, covering material from Chapters 7, 8 and 9 of the Metric Spaces notes.
-
The fourth example sheet, the first one covering the complex analysis parts of the course (sections 1,2 and 3 of the notes)
-
Branch cuts, Integration along paths, Winding Numbers, Cauchy's Theorem, sections 4-7.1 of the notes
-
Cauchy's integral formulae, Liouville's Theorem, Identity Theorem, Morera's Theorem, Isolated singularities, Laurent series, sec. 7.2-9 from the notes.
-
The argument principle, open mapping theorem, residue calculus, Jordan's lemma, sec. 10-11.3 of the notes
-
Summation of infinite series, keyhole contours, conformal transformations, Dirichlet's problem, sec 11.4-12 of the notes
-
These are the notes for the first third of the course, on metric spaces. They are relevant to the first three exercise sheets.
-
These are the notes for the second part of the course- relevant for problem sheets 4-8.
-
These are notes from R. Earl who taught the course in the past.
-
Slides for week 5 Lectures (updated/corrected)
-
Slides for week 6 Lectures
-
Slides for week 8 Lectures (updated/corrected)
-