SECOND PUBLIC EXAMINATION

Honour School of Mathematics Part C: Paper C5.2
Honour School of Physics Part C: Paper C5.2

ELASTICITY AND PLASTICITY

TRINITY TERM 2015

THURSDAY, 4 JUNE 2015, 2.30pm to 4.00 pm

You may submit answers to as many questions as you wish but only the best two will count for the total mark.

You must start a new booklet for each question which you attempt. Indicate on the front sheet the numbers of the questions attempted. A booklet with the front sheet completed must be handed in even if no question has been attempted.

Do not turn this page until you are told that you may do so

1. (a) [18 marks] An elastic rod with circular cross-section and density ρ, Young modulus E, constant radius a and length L is clamped horizontally at one end $(x=0)$ and is free at the other $(x=L)$. The rod sags (deflects) under the influence of its weight, with g denoting the acceleration due to gravity.
(i) Starting from first principles, show that a small transverse displacement, $w(x)$, satisfies

$$
\begin{aligned}
\frac{\mathrm{d} N}{\mathrm{~d} x}+T \frac{\mathrm{~d}^{2} w}{\mathrm{~d} x^{2}}-\pi a^{2} \rho g & =0 \\
\frac{\mathrm{~d} M}{\mathrm{~d} x}-N & =0
\end{aligned}
$$

where M is the bending moment, N is the shear force and T is the tension within the rod.
(ii) Why is $T=0$?
(iii) You are given that

$$
M=-E I \frac{\mathrm{~d}^{2} w}{\mathrm{~d} x^{2}}
$$

where

$$
I=\iint_{y^{2}+z^{2} \leqslant a^{2}} z^{2} \mathrm{~d} y \mathrm{~d} z
$$

is the moment of inertia of the cross-section of the rod.
Calculate I in terms of the radius of the cross-section a.
Write down an explicit differential equation for the transverse displacement $w(x)$ and give, with justification, the appropriate boundary conditions.
(iv) Solve this problem for $w(x)$ explicitly and give an expression for the vertical deflection of the end of the rod, $w(L)$.
(v) What is $N(0)$? Interpret your result physically.
(b) [7 Marks] The branches of trees sag under their weight causing a bending moment to be applied at the join between the branch and the tree. If this bending moment becomes too large, the branch may snap off the tree. However, branches are also slightly tapered, i.e. they narrow with distance from the trunk of the tree. To model this, we shall use the ideas developed in part (a), but now accounting for a spatially varying branch radius, $a(x)=a_{0}(1-\epsilon x / L)$, and $\epsilon<1$. The dimensionless parameter ϵ measures the tapering of the branch.
(i) Write down the differential equation for the bending moment $M(x)$ together with the appropriate boundary conditions.
(ii) Solve this differential equation and determine the bending moment at the point at which the branch joins the tree. For given a_{0} and L, does tapering make it more or less likely that a branch will snap off?
2. (a) [3 marks] Navier's equation for time-dependent motions of an elastic medium with constant density ρ reads

$$
\rho \frac{\partial^{2} u_{i}}{\partial t^{2}}=\frac{\partial \tau_{i j}}{\partial x_{j}} .
$$

Here $\mathbf{u}=\left(u_{i}\right)$ is the displacement field and $\mathcal{T}=\left(\tau_{i j}\right)=\left(\tau_{j i}\right)$ is the stress tensor, which satisfies the constitutive equation

$$
\tau_{i j}=\lambda(\nabla \cdot \mathbf{u}) \delta_{i j}+\mu\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)
$$

with λ and μ the (constant) Lamé coefficients.
Show that anti-plane displacements of the form $\mathbf{u}=w(x, y, t) \mathbf{k}$ satisfy a wave equation with wave speed $c_{s}^{2}=\mu / \rho$.
(b) [13 Marks] Now consider a material of density ρ with $\mu=\mu_{1}$, occupying the region $-h \leqslant y \leqslant h,-\infty<x<\infty$. Another material with the same density but $\mu=\mu_{2}>\mu_{1}$ occupies the region $|y|>h,-\infty<x<\infty$. Denote the displacements in each of the three regions by $w_{1}(x, y, t)$ for $|y| \leqslant h, w_{2}^{+}(x, y, t)$ for $y>h$ and $w_{2}^{-}(x, y, t)$ for $y<-h$.
(i) Write down the equations governing w_{1}, w_{2}^{+}and w_{2}^{-}. What are the corresponding boundary conditions?
(ii) By seeking wave solutions travelling in the x-direction, with wavenumber k and angular frequency ω, show that either

$$
\tan m h=\frac{\mu_{2}}{\mu_{1}} \frac{\ell}{m}
$$

or

$$
\cot m h=-\frac{\mu_{2}}{\mu_{1}} \frac{\ell}{m},
$$

where

$$
\ell^{2}=k^{2}-\frac{\rho \omega^{2}}{\mu_{2}}, \quad m^{2}=\frac{\rho \omega^{2}}{\mu_{1}}-k^{2} .
$$

(c) [9 Marks] Consider now the problem from part (b) but with the additional restriction that $\mu_{1} / \mu_{2}=\delta \ll 1$.
(i) Show that if $\delta=0$, then the minimum phase speed of these waves satisfies

$$
\frac{c_{\min }^{2}}{c_{1}^{2}}=1+\frac{\pi^{2}}{4 k^{2} h^{2}},
$$

where $c_{1}^{2}=\mu_{1} / \rho$.
(ii) Show that the leading order correction to this result is

$$
\frac{c_{\min }^{2}}{c_{1}^{2}}-1-\frac{\pi^{2}}{4 k^{2} h^{2}} \approx-\frac{\pi^{2}}{2 k^{3} h^{3}} \delta .
$$

[You may make use of the result that $\tan (\pi / 2+\theta) \approx-\theta^{-1}$ for $\theta \ll 1$.]
3. (a) [5 Marks] Assuming plane strain in the $x-y$ plane, calculate the shear stress on a surface with unit normal $\mathbf{n}=(\cos \theta, \sin \theta, 0)^{T}$ and show that the maximum shear stress (as θ varies) is

$$
S=\sqrt{\tau_{x y}^{2}+\frac{\left(\tau_{y y}-\tau_{x x}\right)^{2}}{4}} .
$$

(b) [10 Marks] A linear elastic material occupies the annulus $a<r<b$ in plane polar coordinates (r, θ). The inner surface, $r=a$, is stress free, while the outer surface $r=b$ is subject to a radial displacement $u(r=b)=-U$.
(i) Calculate the stress and displacement fields within the annulus.
(ii) Suppose that the material satisfies the Tresca condition, i.e. that $S \leqslant \tau_{y}$ with τ_{y} the yield stress. Find the critical displacement, U_{c}, at which yield first occurs and the radial position at which it occurs.
(c) [10 Marks] For $U>U_{c}$, assume that the material is perfectly plastic within some region $a<r<s<b$, i.e. $S=\tau_{y}$ there.
(i) Evaluate the stress components and show that the unknown edge of the plastic region, s, satisfies

$$
U=\frac{\tau_{y} s^{2}}{2 \mu b}+\frac{\tau_{y} b}{2(\lambda+\mu)}[2 \log (s / a)+1] .
$$

(ii) Calculate the radial stress that must be imposed at $r=b$ to impose a displacement $U>U_{c}$.
[In this question, you may use without proof the steady momentum equation together with the constitutive relations for purely radial displacement $u(r)$ of a linearly elastic solid, namely

$$
\frac{\mathrm{d} \tau_{r r}}{\mathrm{~d} r}+\frac{\tau_{r r}-\tau_{\theta \theta}}{r}=0, \quad \tau_{r r}=(\lambda+2 \mu) \frac{\mathrm{d} u}{\mathrm{~d} r}+\lambda \frac{u}{r}, \quad \tau_{\theta \theta}=\lambda \frac{\mathrm{d} u}{\mathrm{~d} r}+(\lambda+2 \mu) \frac{u}{r}
$$

where (r, θ) are plane polar coordinates and λ and μ are the Lamé constants.]

C5.2 Elastaits Plastorts
a) i)

Werght per wit length is $\sigma=g \cdot g$ A

Then balance of fones gives:

$$
\underline{O}=\binom{0}{-\rho g A} \delta x+\left[\binom{T \cos \theta}{T \sin \theta}\right]_{x}^{x+\delta x}+\left[\binom{0}{N}\right]_{x}^{x+\delta x}
$$

Lething $\delta x \rightarrow 0$, we hind: $\frac{d}{d x}(T \cos \theta)=0$
and: $\quad 0=\frac{d v}{d x}+\frac{d}{d x}(T \sin \theta)-g g A$
Displuementsase small, $|\theta|<\mid \Rightarrow \cos \theta \simeq 1$

$$
\begin{aligned}
& \text { ar, }|\theta|<\mid \Rightarrow \cos \theta \simeq 1 \\
& \quad \sin \theta \simeq \tan \theta \approx \frac{d \omega}{d x} . \\
& \Rightarrow \frac{d T}{d x}=0
\end{aligned}
$$

and so:

$$
0=-s g A+\frac{d N}{d x}+T \frac{d^{2} \omega}{d x^{2}}
$$

To detemine N, we un torghe balanceon the segnent

Talling mements about x :

$$
\begin{aligned}
& M(x+\delta x)-M(x)-N(x=0) \delta x=0 \\
& \Rightarrow \frac{d M}{d x}=N .
\end{aligned}
$$

$$
\Rightarrow \quad \frac{d^{2} M}{d x^{2}}+T \frac{d^{2} w}{d x^{2}}-\rho g \pi a^{2}=0
$$

ii) We alreadis sons that $\frac{d t}{d x}=0$.

2 However $T @ x=L=0$ (no lone applied ramnessels)

$$
\Rightarrow T=0 \forall x .
$$

iii) Given that $M=-E I \frac{d^{2} \omega}{d x^{2}}$

$$
\text { so that } N=-\frac{d}{d x}\left(E I \frac{d^{2} w}{d x^{2}}\right)
$$

$$
\begin{aligned}
I=\int z^{2} d y d z & =\int_{0}^{a} d r \cdot r \int_{0}^{2 \pi} d \theta\left[(z=r \sin e)^{2}\right] \\
& =\frac{1}{2} 2 \pi \int_{0}^{4} r^{b} d r 2 \pi^{4} / 4 \\
\therefore N & =-\frac{\pi a^{4} E}{4} \frac{d^{3} \omega}{d x^{3}}
\end{aligned}
$$

and binal emp is:

$$
\begin{aligned}
& 0=-y g+a^{2}-\frac{\pi a^{4} E}{4} \frac{d^{4} w}{d x^{4}} \\
& \Rightarrow \frac{d^{4} \omega}{d x^{4}}=-\frac{4 g j}{E a^{2}}
\end{aligned}
$$

Need 4 bes:
clanged herzantalls $@ x=0 \Rightarrow \omega(0)=w^{\prime}(0)=0$
free ($x=L \Rightarrow M(L)=N(L)=0 \Rightarrow w^{\prime \prime}(L)=w^{\prime \prime \prime}(L)=0$
jov iv) We have:

$$
\begin{aligned}
& \frac{d^{3} \omega}{d x^{3}}=\frac{4 g g}{E a^{2}}(L-x) \quad\left(\because \omega^{\prime \prime}(L)=0\right) \\
& \Rightarrow \frac{d^{2} \omega}{d x^{2}}=-\frac{2 g S}{E a^{2}}\left[(x-L)^{2}\right] . \quad\left(\omega^{\prime \prime}(L)=0 .\right) \\
& \Rightarrow \quad \frac{d \omega}{d x}=\frac{2 g 9}{3 E a^{2}}\left[(L-x)^{3}-L^{3}\right] \\
& \left(\omega^{\prime}(0)=0\right) \\
& \begin{array}{c}
\Rightarrow \omega(x)=\frac{2 g 9}{3 E n^{2}}\left[\frac{L^{4}-(L-x)^{4}}{4}-L^{3} x\right] \\
(\omega(0)=0)
\end{array}
\end{aligned}
$$

$$
w(L)=\frac{2 g g}{3 E a^{2}}\left[\frac{L^{4}}{4}-L^{4}\right]=-\frac{\rho g L^{4}}{2 E a^{2}}
$$

v)

$$
\begin{aligned}
N(0) & =-\frac{\pi a^{4} E}{4} w "(0) \\
& =-\frac{\pi a^{4} E}{4} \cdot \frac{4 g g}{E a^{2}} L \\
& =-\pi a^{2} \cdot g g \cdot L \\
& =- \text { werght ot lod }
\end{aligned}
$$

Shear fone pxact's balances ners Nt of nod (as it must sina it is haddins He rodup!)
wo (b) i) Still have: $\frac{d^{2} M}{d x^{2}}=g g \pi a^{2}$

$$
=g g \pi r_{0}^{2}(1-\varepsilon x / L)^{2}
$$

(but not $\frac{d^{4} w}{d x^{4}}=-\frac{485}{E a^{2}}$ since I is inside M).
$B C_{s}$ are $M(L)=N(L)=0$

$$
\begin{aligned}
& \begin{array}{l}
\\
\\
\\
M^{\prime}(L) \\
\Rightarrow M(L)
\end{array} \\
=M^{\prime}(L) & =0 .
\end{aligned}
$$

ii)

$$
\begin{aligned}
& \frac{d M}{d x}=\rho g \pi a_{0}^{2} \frac{L}{3 \varepsilon}\left[(1-\varepsilon)^{3}-(1-\varepsilon x / L)^{3}\right] \quad\left(M^{\prime}(L)_{2}\right. \\
& \Rightarrow M=\rho g \pi a_{0}^{2} \frac{L}{3 \varepsilon}\left[\begin{array}{l}
(1-\varepsilon)^{3}(x-L) \\
+\frac{L}{4 \varepsilon}\left[(1-\varepsilon x / L)^{4}-(1-\varepsilon)^{4}\right]
\end{array}\right. \\
&(M(L)=0) .
\end{aligned}
$$

Hence moment moor branch gains tree is:

$$
\begin{aligned}
& M(0)=\operatorname{gg\pi ac} \frac{L}{3 \varepsilon}\left[\begin{array}{l}
-L(1-\varepsilon)^{3} \\
+\frac{L}{4 \varepsilon}\left[1-(1-\varepsilon)^{4}\right]
\end{array}\right] \\
& =g g \pi a_{0}^{2} \frac{L^{2}}{12 \varepsilon^{2}}\left[\begin{array}{c}
1-\left(x-4 \varepsilon+6 \varepsilon^{2}-4 \varepsilon^{3}+\varepsilon^{4}\right) \\
-4 \varepsilon\left(x-3 \varepsilon+3 \varepsilon^{2} \varepsilon \varepsilon^{3}\right)
\end{array}\right] \\
& =95 \pi a_{0}^{2} \frac{L^{2}}{12}\binom{6-8 \varepsilon+3 \varepsilon^{2}}{6.82 \cdot 3 \varepsilon^{2}}
\end{aligned}
$$

$$
\left(\sin (\sigma)=89 \pi c_{0}^{2} L^{2} / 2 \quad(a l s o \quad \operatorname{lncm} a) .\right.
$$

with $\varepsilon<4 / 3 \quad M(0)<85 \pi a_{0}^{2} L^{2} / 2$
lat in practice most howe $\varepsilon<1$ to
keep radius invite \rightarrow tapenins reduces

9) Ne are given that:

$$
\underline{u}=w(x, y, t) \underline{k}
$$

with: $j \frac{\partial^{2} u_{1}}{\partial t^{2}}=\lambda \frac{\partial}{\partial x_{i}}\left(0 \cdot w_{0}\right)+\mu \frac{\partial^{2} u_{i}}{\partial x_{j} \partial x_{j}}+\mu \frac{\partial}{\partial x_{i}}\left(\frac{\partial u_{j}}{\partial x_{j}}\right)$

$$
\Rightarrow \rho \frac{\partial^{2} \underline{u}}{\partial t^{2}}=(\lambda+\mu) \nabla(\nabla \cdot \underline{u})+\mu \nabla^{2} \underline{u}
$$

But $\nabla \cdot \underline{y}=0$ her and $\nabla^{2} \underline{u}=\left(\sigma^{2} \omega\right) \underline{k}$
so we herr:

$$
\rho \frac{\partial^{2} \omega}{\partial t^{2}}=\mu v^{2} \omega
$$

or $\frac{\partial^{2} w}{\partial t^{2}}=c_{s}^{2} \nabla^{2} \omega$ with $c_{s}^{2}=M / \rho$.
b) fie. the wave aqua nite speed of sound c_{s}.
in)
Now specialize te the problem of a sain:
have:

$$
\rho \frac{\partial^{2} \omega}{\partial t^{2}}=\mu_{i} \nabla^{i} \omega
$$

require continents of
displacement
at $y= \pm h \Rightarrow w_{1}\left(\frac{y}{2} h\right)=w_{i}^{t}(h)$
 and $w_{1}(-h)=w_{2}^{-}(-h)$.

Also, require contmantor $\tau \underline{n}=\tau \cdot k=\tau_{y z}=M_{i} \frac{\partial w}{\partial y}$.

$$
\left[\tau_{i j}=\lambda(v-\underline{v}) \delta_{i j}+M\left(\frac{\partial \mu_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)\right]
$$

So we have:

$$
\left.\mu_{2} \frac{\partial w_{2}^{+}}{\partial y^{2}}\right|_{y_{2} h}=\left.\mu_{1} \frac{\partial w_{1}}{\partial y}\right|_{h}
$$

$$
\text { and }\left.H_{2} \frac{\partial \omega_{i}}{\partial y}\right|_{y=-h}=\left.M_{1} \frac{\partial \omega_{1}}{\partial y}\right|_{h}
$$

Also require $w_{2}^{t} \rightarrow 0$ as $y \rightarrow+\infty$

$$
\omega_{i} \rightarrow 0 \text { as } y_{i} \rightarrow-\infty
$$

b
(in (xi) ii) Look for a solution of the form:

$$
\begin{aligned}
& w_{1}=f_{1}(y) e^{i(k x-\omega t)} \\
& w_{2}^{+}=f_{2}^{+}(y) e^{i(k x-\omega t)} \\
& w_{2}^{-}=f_{2}^{-}(y) e^{i(k x-\omega t)}
\end{aligned}
$$

then:

$$
\begin{aligned}
-\rho \omega^{2} f_{1} & =M_{1}\left[f_{1}^{\prime \prime}-k^{2} f_{1}\right] \\
\text { and }-g \omega^{2} f_{2}^{2 t} & =M_{2}\left[\frac{d^{2} f_{2}^{t}}{d \eta_{2}^{2}}-k^{2} f_{2}^{t}\right] .
\end{aligned}
$$

Letting $l^{2}=k^{2}-\frac{f \omega^{2}}{\mu_{2}}$
and $m^{2}=\frac{\rho \omega^{2}}{\mu_{1}}-k^{2}$
ne have:
$f_{1}^{\prime \prime}=-m^{2} f_{1} \quad$ (wont sinus ideal suctions in limits region and $f_{2}^{ \pm}=l^{2} f_{2}+$ expenectial solutions in ∞ regions).

$$
\begin{aligned}
\Rightarrow \quad f_{1} & =B \cos m y+C \sin m i \\
f_{2}^{+} & =A_{+} e^{-l y} \\
f_{2}^{-} & =A_{-} e^{l y}
\end{aligned}
$$

Cuntrinits of wo

$$
\Rightarrow \quad B \cos m h+C \sin m h=A_{+} e^{-l h}
$$

and $B \cos m h-C \sin m h=A_{-} e^{-h}$

$$
\Rightarrow 2 B \cos m h=\left(A_{+}+A_{-}\right) e^{-h} \text {. }
$$

Contrimitos of $\tau_{y z} \Rightarrow$

$$
\begin{gathered}
m \mu_{1}(-B \sin m h+C \cos m h)=-\mu_{2} l A_{+} e^{-l h} \\
m \mu_{1}(B \sin m h+C \cos m)=\mu_{2} l A_{-} e^{-h h} \\
\Rightarrow m \mu_{1} 2 B \sin m h-\mu_{2} l\left(A_{+}+A_{-}\right) e^{-1 h} \\
=\mu_{2} l \cdot 2 B \cos m h \\
\Rightarrow \quad B=0 \text { ar }: \quad \tan m=\frac{\mu_{2}}{\mu_{1}} \frac{l}{m}
\end{gathered}
$$

In care (1), imnediatels hone $A_{+}=-A_{-}=C e^{l h} \operatorname{sinmh}$

$$
\begin{aligned}
& \Rightarrow \\
& m \mu_{1} \cos m h=-\mu_{2} \ell \sin m . \\
& \Rightarrow \cot m h=-\frac{\mu_{2}}{\mu_{1}} \frac{l}{m} .
\end{aligned}
$$

(Care (1) is old solution, (1) iseren).
(ivi) i) In the limit $\mu_{2} / \mu_{1} \gg 1$ we home, at linst ander,
Cax (2): funmh>>1

$$
\begin{aligned}
& \text { ie } m h \simeq\left(n+l_{2}\right) \pi \\
& \Rightarrow k h \sqrt{\frac{c^{2}}{c_{1}^{2}}-1} \simeq(n+1 / 2) \pi \\
& \quad \Rightarrow c / c_{1}^{2}=1+(n+1 /)^{2} \pi^{2} / k^{2}
\end{aligned}
$$

so mun speed is $c_{m_{n}}^{2} / c_{1}^{2}=1+\pi^{2} / 4 k^{2} h^{2}$.
Cunx (1): cotmh $>1 \Rightarrow m h^{2} \simeq n \pi$.

$$
\Rightarrow \begin{aligned}
c^{2} / c_{1}^{2} & =1+n^{2} \pi^{2} / n^{2} h^{2} \cdot n=1,2_{1} \\
& z_{n} c_{\text {min }}^{2} / c_{1}^{2} \text { soad man }
\end{aligned}
$$

in ins (唃) Enisage that with $\varepsilon=\frac{\mu_{1}}{\mu_{2}} \ll 1$ will have results clase to thoseabore.

Cax 2 (This ithe one mith min spect of $\varepsilon=0$).

$$
\begin{aligned}
\varepsilon k h \sqrt{\frac{c^{2}}{c_{1}^{2}}-1} & \times \tan k h \sqrt{\frac{c^{2}}{c_{1}^{2}}-1} \\
& =k K \sqrt{1-\frac{c^{2}}{c_{1}^{2}} \cdot c} \\
& \simeq k K\left(1-\frac{1}{2} \varepsilon \frac{c^{2}}{c_{1}^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Natural then tolet: } \\
& \frac{c^{2}}{c_{1}^{2}}=1+\pi^{2} / 4 k^{2} h^{2}+\varepsilon \Delta c^{2}, \operatorname{san}
\end{aligned}
$$

$$
\begin{aligned}
& \cong \tan \left[\frac{\pi}{2}+\frac{x^{2}}{4 x^{2} 4 x^{2} x^{2}} \frac{\pi}{4}\right] \\
& \simeq-2-\frac{\pi}{\varepsilon^{2} \Delta c^{2} q^{2} h^{2} h^{2}} \\
& \text { hancerooi : } 1=-\frac{\pi}{2 k h} \cdot \frac{4 \pi^{2}}{\Delta c^{2} 4^{2} h^{2}} \\
& \text { Hence } \\
& \Rightarrow \quad \Delta c^{2}=-\frac{\pi^{2}}{2 k^{3} h^{3}} \quad \frac{c_{m n_{n}}^{2}}{c_{1}^{2}}=1+\frac{\pi^{2}}{4 k^{2} h^{2}}-\frac{\varepsilon \pi^{2}}{2 k^{2} h^{2} h} .
\end{aligned}
$$

III.

Drat
Marts a)

In place strain, have $\tau=\left(\begin{array}{lll}\tau_{x x} & \tau_{x y} & 0 \\ \tau_{x y} & \tau_{y y} & 0 \\ 0 & 0 & e_{i t}\end{array}\right)$
So the shew r steen is:

$$
\begin{aligned}
t_{\underline{n}} & =\left(-\sin \theta_{,} \cos \theta, 0\right)\left(\begin{array}{c}
\tau_{x x} \cos \theta+\tau_{x y} \sin \theta \\
\tau_{x y} \cos \theta+\tau_{y y} \sin \theta \\
0
\end{array}\right) \\
& =\left(\frac{\left(\tau_{y y}-\tau_{x x}\right)}{2} \sin 2 \theta+\tau_{x y} \cos 2 \theta\right.
\end{aligned}
$$

To maximize this suite it as $A \sin (2 \theta+\phi)$

$$
\text { with } A=\sqrt{\frac{\left(\tau_{y y}-\tau_{x y}\right)^{2}}{4}+\tau_{x_{n}}^{2}}
$$

A is clears the maximin value and so.

$$
S=\sqrt{\tau_{m_{3}^{2}}^{2}+\frac{\left(\tau_{3 y}-\tau_{m x}\right)^{2}}{4}} .
$$

b) i) We have:

$$
\frac{d \tau_{r r}}{d r}+\frac{\tau_{r r}-\tau_{00}}{r}=0
$$

with: $\tau_{r r}=(\lambda+2 \mu) \frac{d u}{d r}+\lambda n / r$

$$
\tau_{\theta \theta}=\lambda \frac{d u_{1}}{d r}+(\lambda+2 \mu) u / r .
$$

Bounden conditions $\left.\Rightarrow \overline{u r}_{\text {ar }}\right|_{r=a} \geq 0$

$$
u(b)=-u
$$

Substitutions hex in, we have:

$$
u^{\prime \prime}+\left.u^{1}\right|_{r}-u / r^{2}=0
$$

III
Solutions are of the Corms:

$$
u=A r+B / r
$$

so that I

$$
-U=A b+B / b
$$

and $0=(\lambda+2 \mu)\left(A-B / a^{2}\right)+\lambda\left(A+B / a^{2}\right)$

$$
=2(\lambda+\mu) A-2 \mu B / a^{2}
$$

$$
\Rightarrow B=a^{2} \frac{\lambda+\mu}{\mu} A
$$

$$
\begin{aligned}
\therefore-\mu & =\frac{A}{b}\left[b^{2}+a^{2} \frac{\lambda+\mu}{\mu}\right] \\
& =\frac{A}{\mu b}\left[\mu b^{2}+\dot{a}^{2}(\lambda \mu)\right]
\end{aligned}
$$

$$
\Rightarrow A=-\frac{M M b}{M b^{2}+(\lambda+M) a^{2}} .
$$

$$
\begin{aligned}
& \text { ie: } u(r)=-\frac{U \mu b}{\mu b^{2}+(\lambda+\mu) a^{2}}\left[r+\frac{\lambda+\mu}{\mu} \frac{a^{2}}{r}\right] \\
& \tau_{r r}=-\frac{\mu \mu b}{\mu b^{2}+(\lambda+\mu) a^{2}}\left[\begin{array}{l}
(\lambda+2 \mu)\left(1-\frac{\lambda+\mu}{\mu} a^{2} / r^{2}\right) \\
\left.+\lambda\left(1+\frac{\lambda+\mu}{\mu} a^{2} / r^{2}\right)\right]
\end{array}\right] \\
&=-\frac{\mu \mu b}{\mu b^{2}+(\lambda \mu \mu) a^{2}}\left[2(\lambda+\mu)-2(\lambda+\mu) a^{2} / r^{2}\right] \\
&=-\frac{2 \mu \mu(\lambda+\mu) b}{\mu b^{2}+(\lambda-\mu) a^{2}}\left[1-a^{2} / r^{2}\right] \\
& \tau_{e e}=-\frac{2 \mu \mu(\lambda+\mu) b}{\mu b^{2}+(\lambda L \mu) a^{2}}\left[1+a^{2} / r^{2}\right]
\end{aligned}
$$

III
ii) Here $\tau_{r o}=0$ by assumptive

$$
\begin{aligned}
\Rightarrow S & =\frac{\left|\tau_{r r}-\tau_{e o}\right|}{2} \\
& =\frac{1}{2} \cdot 2 \frac{a^{2}}{r^{2}} \frac{2 u \mu(\lambda \mu \mu) b}{\mu b^{2}+(\lambda \mu \mu) a^{2}} .
\end{aligned}
$$

Tresca condition reguries $S \leq \tau_{y}$.
Cleats S decreases with r, so lazestat $r z a$.
\therefore Yield will ocam list at r ra with:

$$
\begin{aligned}
& \tau_{y}=\frac{a^{2}}{a^{2}} \frac{2 U_{c} \mu(\lambda+M) b}{\mu b^{2}+\left(\lambda_{1}-M\right) a^{2}} \\
& \text { ie. } U_{c}=\frac{\mu b^{2}+\left(\lambda_{1}-\mu\right) a^{2}}{2 \mu\left(\lambda_{+} \mu\right) b} \cdot \tau_{y}
\end{aligned}
$$

c)
i) Once the material has yielded, we hae

$$
\left|\tau_{r r}-\tau_{o o}\right|=2 \tau_{b} \quad \text { in } a<r<S
$$

and: $\quad \tau_{r r}=A-B / r^{2}$ in $s<r<b$

$$
T_{\theta e^{2}} A+B I_{r^{2}}
$$

with

$$
\begin{aligned}
& \operatorname{Ir}_{r}(r, a)=0 \\
& u_{r 2}(r=b)=-U
\end{aligned}
$$

and τ_{r} ctocatras.
Now in $s<r, \tau_{r r}-\tau_{\theta \theta}=-20 / r^{2}$. MO (julie him
Hance expect $\tau_{r r}-\tau_{e \theta}=+2 \tau_{y}$ in $a<r<s$.

$$
\begin{aligned}
& \Rightarrow \frac{d \tau_{r_{r}}}{d r}=-\frac{2 \tau_{0}}{r} \Rightarrow \tau_{r r}=-2 \tau_{y} \log (\mid a) \\
&\left(\left.\because \quad \tau_{r}\right|_{r z a}=0\right)
\end{aligned}
$$

III.

Now at $r=s_{i}^{+}$

$$
\text { have } \begin{aligned}
\tau_{m}-\tau_{\infty 0} & =-2 B / s^{2} \\
& =+2 \tau_{y} \\
& \Rightarrow B=-\tau_{y} s^{2}
\end{aligned}
$$

Put also, in $r>s$.

$$
\begin{aligned}
& (\lambda+\mu) \frac{d \mu}{d r}+\lambda u I_{r}=\tau_{w}=A-B / r^{2} \\
& \Rightarrow u=\frac{A}{2(\lambda+\mu)} r+\frac{1}{2 \mu} \frac{B}{r} \\
& \text { and }-U=\frac{A}{2(1, \mu)} b+\frac{B}{2 \mu} \frac{1}{b} .
\end{aligned}
$$

while $A-B / s^{2}=-2 \tau_{y} \mid \mathrm{cos}^{5 / a}$.

$$
\begin{align*}
& \Rightarrow A=-2 \tau_{y} \mid \mathrm{cos} / a \\
\therefore \quad & \tau_{y} \tag{*}\\
\therefore & +U=\frac{\tau_{y}[2 \operatorname{cog}(\operatorname{lic})+1]}{2(1+\mu)} b+\frac{\tau_{y} s^{2}}{2 \mu b}
\end{align*}
$$

Fled with sea:

$$
\begin{aligned}
& +u_{c}^{\hat{y}} \frac{\tau_{y}}{2\left(\lambda_{s} \mu\right)} b+\frac{\tau_{y} s^{2}}{2 \mu b} . \\
& \left.=\frac{\tau_{y}}{2 \mu(\lambda+\mu) b}\left[\mu b^{2}+(\lambda+\mu) a^{2}\right]\right] \\
& \text { ii) Now, }\left.\tau_{m}\right|_{r_{2} b}=A-B / b_{b}^{2} \\
& =-2 \tau_{y} \operatorname{logsia}_{a}-\tau_{y}+\tau_{y} s^{2} / b^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \tau_{r}\left(r_{2} b\right)=t_{5}-\frac{2\left(\lambda_{1} \mu\right)}{b}\left[u-\frac{\tau_{5} s^{2}}{2 \mu b}\right]-\tau_{5}+\tau_{5} \tau_{5}^{2} / b^{2}
\end{aligned}
$$

