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SECOND PUBLIC EXAMINATION

Honour School of Mathematics Part C: Paper C5.2
Honour School of Physics Part C: Paper C5.2

ELASTICITY AND PLASTICITY

TRINITY TERM 2015

THURSDAY, 4 JUNE 2015, 2.30pm to 4.00pm

You may submit answers to as many questions as you wish but only the best two will count for
the total mark.

You must start a new booklet for each question which you attempt. Indicate on the front sheet the
numbers of the questions attempted. A booklet with the front sheet completed must be handed in

even if no question has been attempted.

Do not turn this page until you are told that you may do so
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1. (a) [18 marks] An elastic rod with circular cross-section and density ρ, Young modulus E,
constant radius a and length L is clamped horizontally at one end (x = 0) and is free
at the other (x = L). The rod sags (deflects) under the influence of its weight, with g
denoting the acceleration due to gravity.

(i) Starting from first principles, show that a small transverse displacement, w(x), satis-
fies

dN

dx
+ T

d2w

dx2
− πa2ρg = 0

dM

dx
−N = 0,

where M is the bending moment, N is the shear force and T is the tension within
the rod.

(ii) Why is T = 0?

(iii) You are given that

M = −EI d2w

dx2

where

I =

∫∫
y2+z26a2

z2 dy dz

is the moment of inertia of the cross-section of the rod.
Calculate I in terms of the radius of the cross-section a.
Write down an explicit differential equation for the transverse displacement w(x) and
give, with justification, the appropriate boundary conditions.

(iv) Solve this problem for w(x) explicitly and give an expression for the vertical deflection
of the end of the rod, w(L).

(v) What is N(0)? Interpret your result physically.

(b) [7 Marks] The branches of trees sag under their weight causing a bending moment to be
applied at the join between the branch and the tree. If this bending moment becomes
too large, the branch may snap off the tree. However, branches are also slightly tapered,
i.e. they narrow with distance from the trunk of the tree. To model this, we shall use
the ideas developed in part (a), but now accounting for a spatially varying branch radius,
a(x) = a0(1− εx/L), and ε < 1. The dimensionless parameter ε measures the tapering of
the branch.

(i) Write down the differential equation for the bending moment M(x) together with the
appropriate boundary conditions.

(ii) Solve this differential equation and determine the bending moment at the point at
which the branch joins the tree. For given a0 and L, does tapering make it more or
less likely that a branch will snap off?
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2. (a) [3 marks] Navier’s equation for time-dependent motions of an elastic medium with con-
stant density ρ reads

ρ
∂2ui
∂t2

=
∂τij
∂xj

.

Here u = (ui) is the displacement field and T = (τij) = (τji) is the stress tensor, which
satisfies the constitutive equation

τij = λ(∇ · u)δij + µ

(
∂ui
∂xj

+
∂uj
∂xi

)
with λ and µ the (constant) Lamé coefficients.

Show that anti-plane displacements of the form u = w(x, y, t)k satisfy a wave equation
with wave speed c2s = µ/ρ.

(b) [13 Marks] Now consider a material of density ρ with µ = µ1, occupying the region
−h 6 y 6 h, −∞ < x < ∞. Another material with the same density but µ = µ2 > µ1
occupies the region |y| > h, −∞ < x <∞. Denote the displacements in each of the three
regions by w1(x, y, t) for |y| 6 h, w+

2 (x, y, t) for y > h and w−
2 (x, y, t) for y < −h.

(i) Write down the equations governing w1, w
+
2 and w−

2 . What are the corresponding
boundary conditions?

(ii) By seeking wave solutions travelling in the x-direction, with wavenumber k and an-
gular frequency ω, show that either

tanmh =
µ2
µ1

`

m

or

cotmh = −µ2
µ1

`

m
,

where

`2 = k2 − ρω2

µ2
, m2 =

ρω2

µ1
− k2.

(c) [9 Marks] Consider now the problem from part (b) but with the additional restriction
that µ1/µ2 = δ � 1.

(i) Show that if δ = 0, then the minimum phase speed of these waves satisfies

c2min

c21
= 1 +

π2

4k2h2
,

where c21 = µ1/ρ.

(ii) Show that the leading order correction to this result is

c2min

c21
− 1− π2

4k2h2
≈ − π2

2k3h3
δ.

[You may make use of the result that tan(π/2 + θ) ≈ −θ−1 for θ � 1.]
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3. (a) [5 Marks] Assuming plane strain in the x-y plane, calculate the shear stress on a surface
with unit normal n = (cos θ, sin θ, 0)T and show that the maximum shear stress (as θ
varies) is

S =

√
τ2xy +

(τyy − τxx)2

4
.

(b) [10 Marks] A linear elastic material occupies the annulus a < r < b in plane polar
coordinates (r, θ). The inner surface, r = a, is stress free, while the outer surface r = b is
subject to a radial displacement u(r = b) = −U .

(i) Calculate the stress and displacement fields within the annulus.

(ii) Suppose that the material satisfies the Tresca condition, i.e. that S 6 τy with τy the
yield stress. Find the critical displacement, Uc, at which yield first occurs and the
radial position at which it occurs.

(c) [10 Marks] For U > Uc, assume that the material is perfectly plastic within some region
a < r < s < b, i.e. S = τy there.

(i) Evaluate the stress components and show that the unknown edge of the plastic region,
s, satisfies

U =
τys

2

2µb
+

τyb

2(λ+ µ)
[2 log(s/a) + 1] . (†)

(ii) Calculate the radial stress that must be imposed at r = b to impose a displacement
U > Uc.

[In this question, you may use without proof the steady momentum equation together with the
constitutive relations for purely radial displacement u(r) of a linearly elastic solid, namely

dτrr
dr

+
τrr − τθθ

r
= 0, τrr = (λ+ 2µ)

du

dr
+ λ

u

r
, τθθ = λ

du

dr
+ (λ+ 2µ)

u

r

where (r, θ) are plane polar coordinates and λ and µ are the Lamé constants.]
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