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SECOND PUBLIC EXAMINATION

Honour School of Mathematics Part C: Paper C5.2

ELASTICITY AND PLASTICITY

TRINITY TERM 2017

THURSDAY, 1 JUNE 2017, 9.30am to 11.15am

You may submit answers to as many questions as you wish but only the best two will count for
the total mark. All questions are worth 25 marks.

You should ensure that you:

• start a new answer booklet for each question which you attempt.

• indicate on the front page of the answer booklet which question you have attempted in that
booklet.

• cross out all rough working and any working you do not want to be marked. If you have used
separate answer booklets for rough work please cross through the front of each such booklet
and attach these answer booklets at the back of your work.

• hand in your answers in numerical order.

If you do not attempt any questions, you should still hand in an answer booklet with the front
sheet completed.

Do not turn this page until you are told that you may do so
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1. You are given Cauchy’s momentum equation in component form

ρ
∂2ui
∂t2

=
∂τij
∂xj

where T = (τij) is the stress tensor, u is the displacement field and ρ is the (constant) density
of the solid. (Throughout this question you should neglect the role of body forces such as
gravity.)

(a) [6 marks]

(i) Use Cauchy’s equation to show that for any fixed volume V ,

d

dt

∫
V

(
1
2ρ

∣∣∣∣∂u∂t
∣∣∣∣2 +W

)
dV = −

∫
∂V
F · n dS (1)

where Fj = −τij∂ui/∂t is the energy flux, W(eij) is the strain energy density (a
function of the strain tensor E = (eij), such that τij = ∂W/∂eij).

(ii) Interpret the individual terms in (1), and the equation as a whole.

(b) [4 marks] The remainder of this question concerns wave propagation between two semi-
infinite elastic materials (welded together at y = 0) in anti-plane strain. For y > 0 the
shear modulus is µ+ while for y < 0 the shear modulus is µ−. All other properties of the
materials are identical.

(i) In anti-plane strain, the displacement field takes the form u(x, y, z, t) = w(x, y, t)ez.
Show that for elastic waves in anti-plane strain, w(x, y, t) satisfies a two-dimensional
wave equation with a wave speed that you should give in terms of the Lamé param-
eters, λ and µ, as well as the density ρ.

(ii) Write down the appropriate boundary conditions on w(x, y, t) at y = 0.

(c) [9 marks] A wave with wavenumber k− and angular frequency ω is incident on the bound-
ary y = 0 from y = −∞ at an angle α to the y-axis. The incident wave thus corresponds
to a displacement uinc = winc(x, y, t)ez with

winc(x, y, t) = Re {exp [ik−(x sinα+ y cosα)− iωt]} .

(i) Write down expressions for the reflected wave (which propagates in y < 0 at an angle
β to the y-axis) and the transmitted wave (which propagates in y > 0 at an angle γ
to the y-axis). Hence derive expressions for the wavenumber k+ of the transmitted
wave and the angle γ.

(ii) Show that the amplitudes of the reflected and transmitted waves, R and T respec-
tively, may be written

R =
µ− cotα− µ+ cot γ

µ− cotα+ µ+ cot γ
, T =

2µ− cotα

µ− cotα+ µ+ cot γ
.

(d) [6 marks] Now consider specifically the case µ+ > µ−.

(i) What happens if α > αc = sin−1(
√
µ−/µ+)?

(ii) By letting γ = π/2− iθ and the amplitude T = |T |eiφ, or otherwise, calculate 〈F〉 for
α > αc.
[Here 〈f〉 = T−1

∫ t+T
t f(s) ds denotes the time average of a periodic function f(t)

with period T . F is as defined in part (a).]
What is the (time-averaged) flux of energy to y = +∞?

(iii) Show that when α > αc displacements within y > 0 decay over a typical vertical
distance

k−1−
[
sin2 α− µ−/µ+

]−1/2
.
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2. This question concerns the contact between a light elastic membrane and a massive rigid object.
Throughout the question, you may neglect the mass of the membrane, even when you account
for the mass of the rigid object.

(a) [11 marks] A semi-infinite 2-D strip membrane is clamped at x = ±L and is subject to a
(y-independent) loading, p(x), in the negative z-direction. The membrane is stretched by
a constant tension T in the x-direction. The shape of the membrane may be described
by z = w(x) for −L 6 x 6 L with w(±L) = 0.

(i) Show that small transverse displacements, w(x), satisfy

T
d2w

dx2
= p. (2)

If the membrane is brought into contact with a rigid obstacle z = f(x), show that
T and dw/dx are continuous at the points where the membrane makes contact with
the obstacle.

(ii) A cylindrical object of mass m per unit length, and radius R is laid to rest on the
stretched membrane. Its weight per unit length, mg, deforms the membrane, such
that the lowest point of the membrane lies a vertical distance δ below the edges of
the membrane (at x = ±L). You should assume that the shape of the cylinder is
then approximated by z = f(x) = −δ + x2/(2R).
Determine the contact set, [−s, s], as δ varies, but subject to δR/L2 � 1.
Show that the cylinder rests in equilibrium with

δ ≈ mgL

2T
. (3)

(b) [8 marks] Consider now a membrane that is clamped at a circular boundary, r = L, with
r the usual polar coordinate. (The shape of the membrane may then be written z = w(r)
with the clamping condition written w(L) = 0.)

(i) Assuming that the tension T within the membrane remains constant, determine the
generalization of (2) to the axisymmetric problem.
What are the appropriate conditions on w(r) at the edge of a contact region?

(ii) A sphere of mass m and radius R is laid to rest on the stretched membrane. Its
weight, mg, deforms the membrane, such that the lowest point of the membrane lies
a vertical distance δ below the edges of the membrane (at r = L). You should assume
that the shape of the sphere may be approximated by z = f(r) = −δ + r2/(2R).
Determine the contact set, [0, s], as δ varies, and find an expression for δ as a function
of the weight of the sphere.

(c) [6 marks] A simple model for a trampoline bounce makes use of the results of part (a), to
determine how the lowest position of the bouncer, δ(t), evolves. Assume that the shape of
the trampoline is determined instantaneously for a given δ(t); in particular, the restoring
force from the trampoline on the bouncer is assumed to be a function of δ(t) only.

(i) Using results from part (a) as appropriate, write down, and solve, Newton’s second
law for the evolution of δ(t) from the moment of first contact (at t = 0). (Denote the
initially downward speed of the bouncer by V .)

(ii) Show that the maximum vertical stretching of the trampoline is attained at time

tmax =
π

ω
− 1

ω
tan−1

V ω

g
(4)

where ω = (2T/mL)1/2.

(iii) Determine the duration of the contact between the bouncer and the trampoline, and
compare this time to the natural period of the motion, 2π/ω, in the limits V ω/g � 1
and V ω/g � 1.
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3. A thin elliptical Mode III crack, whose boundary ∂Ω is given by

x2

c2 cosh2 ε
+

y2

c2 sinh2 ε
= 1,

is subject to an antiplane strain displacement field, u = w(x, y)ez.

(a) [12 marks] A shear stress τyz = σ is applied in the far field.

(i) Justify the conditions
∂w

∂n
= 0 on ∂Ω

and w ∼ σy/µ as x2 + y2 →∞.

(ii) Show that the Joukowsky transformation, x+iy = z = 1
2c(ζ+ζ−1) conformally maps

the region |ζ| > eε (ε > 0) to the outside of the crack.

(iii) What is the inverse map from z to ζ?

(iv) Introducing polar coordinates (r, θ) such that ζ = reiθ, show that

w =
cσ

2µ
Im

{
ζ − e2ε

ζ

}
.

[You may use a heuristic justification of the appropriate boundary condition at r = eε,
based on your answer to part (i).]

(b) [9 marks] With the crack aligned as before, the boundary tension is now applied at an
angle α to the horizontal, so that (τxz, τyz) ∼ σ(cosα, sinα) as x2 + y2 →∞.

(i) Repeat the analysis of part (a) to find the displacement in this case.

(ii) Give an expression for the displacement w(z) in the limit ε→ 0.

(iii) Does the rotation of the applied load increase or decrease the intensity of the singu-
larity that is observed at the crack tips?
[You may find it helpful to note that ζ−1 = 2z/c− ζ.]

(c) [4 marks] Return to the case α = π/2, and consider 0 < ε� 1.

(i) Show that the radius of curvature of the crack tip, r0 ∼ ε2c for ε� 1.

(ii) Show that as the crack tip is approached from within the material, e.g. as z ↘ c, the
stress τyz ∼ σ(c/r0)

1/2.
[You may find it useful to note that if a displacement field can be written as w =
Im{f(z)}, then τyz = µRe{f ′(z)}.]
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