SECOND PUBLIC EXAMINATION

Honour School of Mathematics Part C: Paper C5.2

ELASTICITY AND PLASTICITY

TRINITY TERM 2017
THURSDAY, 1 JUNE 2017, 9.30am to 11.15am

You may submit answers to as many questions as you wish but only the best two will count for the total mark. All questions are worth 25 marks.

You should ensure that you:

- start a new answer booklet for each question which you attempt.
- indicate on the front page of the answer booklet which question you have attempted in that booklet.
- cross out all rough working and any working you do not want to be marked. If you have used separate answer booklets for rough work please cross through the front of each such booklet and attach these answer booklets at the back of your work.
- hand in your answers in numerical order.

If you do not attempt any questions, you should still hand in an answer booklet with the front sheet completed.

Do not turn this page until you are told that you may do so

1. You are given Cauchy's momentum equation in component form

$$
\rho \frac{\partial^{2} u_{i}}{\partial t^{2}}=\frac{\partial \tau_{i j}}{\partial x_{j}}
$$

where $\mathcal{T}=\left(\tau_{i j}\right)$ is the stress tensor, \mathbf{u} is the displacement field and ρ is the (constant) density of the solid. (Throughout this question you should neglect the role of body forces such as gravity.)
(a) [6 marks]
(i) Use Cauchy's equation to show that for any fixed volume V,

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{V}\left(\frac{1}{2} \rho\left|\frac{\partial \mathbf{u}}{\partial t}\right|^{2}+\mathcal{W}\right) \mathrm{d} V=-\int_{\partial V} \mathcal{F} \cdot \mathbf{n} \mathrm{~d} S \tag{1}
\end{equation*}
$$

where $\mathcal{F}_{j}=-\tau_{i j} \partial u_{i} / \partial t$ is the energy flux, $\mathcal{W}\left(e_{i j}\right)$ is the strain energy density (a function of the strain tensor $\mathcal{E}=\left(e_{i j}\right)$, such that $\left.\tau_{i j}=\partial \mathcal{W} / \partial e_{i j}\right)$.
(ii) Interpret the individual terms in (1), and the equation as a whole.
(b) [4 marks] The remainder of this question concerns wave propagation between two semiinfinite elastic materials (welded together at $y=0$) in anti-plane strain. For $y>0$ the shear modulus is μ_{+}while for $y<0$ the shear modulus is μ_{-}. All other properties of the materials are identical.
(i) In anti-plane strain, the displacement field takes the form $\mathbf{u}(x, y, z, t)=w(x, y, t) \mathbf{e}_{z}$. Show that for elastic waves in anti-plane strain, $w(x, y, t)$ satisfies a two-dimensional wave equation with a wave speed that you should give in terms of the Lamé parameters, λ and μ, as well as the density ρ.
(ii) Write down the appropriate boundary conditions on $w(x, y, t)$ at $y=0$.
(c) [9 marks] A wave with wavenumber k_{-}and angular frequency ω is incident on the boundary $y=0$ from $y=-\infty$ at an angle α to the y-axis. The incident wave thus corresponds to a displacement $\mathbf{u}_{\mathrm{inc}}=w_{\mathrm{inc}}(x, y, t) \mathbf{e}_{z}$ with

$$
w_{\mathrm{inc}}(x, y, t)=\operatorname{Re}\left\{\exp \left[\mathrm{i} k_{-}(x \sin \alpha+y \cos \alpha)-\mathrm{i} \omega t\right]\right\}
$$

(i) Write down expressions for the reflected wave (which propagates in $y<0$ at an angle β to the y-axis) and the transmitted wave (which propagates in $y>0$ at an angle γ to the y-axis). Hence derive expressions for the wavenumber k_{+}of the transmitted wave and the angle γ.
(ii) Show that the amplitudes of the reflected and transmitted waves, R and T respectively, may be written

$$
R=\frac{\mu_{-} \cot \alpha-\mu_{+} \cot \gamma}{\mu_{-} \cot \alpha+\mu_{+} \cot \gamma}, \quad T=\frac{2 \mu_{-} \cot \alpha}{\mu_{-} \cot \alpha+\mu_{+} \cot \gamma} .
$$

(d) [6 marks] Now consider specifically the case $\mu_{+}>\mu_{-}$.
(i) What happens if $\alpha>\alpha_{c}=\sin ^{-1}\left(\sqrt{\mu_{-} / \mu_{+}}\right)$?
(ii) By letting $\gamma=\pi / 2-\mathrm{i} \theta$ and the amplitude $T=|T| e^{\mathrm{i} \phi}$, or otherwise, calculate $\langle\mathcal{F}\rangle$ for $\alpha>\alpha_{c}$.
[Here $\langle f\rangle=T^{-1} \int_{t}^{t+T} f(s) \mathrm{d} s$ denotes the time average of a periodic function $f(t)$ with period $T . \mathcal{F}$ is as defined in part (a).]
What is the (time-averaged) flux of energy to $y=+\infty$?
(iii) Show that when $\alpha>\alpha_{c}$ displacements within $y>0$ decay over a typical vertical distance

$$
k_{-}^{-1}\left[\sin ^{2} \alpha-\mu_{-} / \mu_{+}\right]^{-1 / 2}
$$

2. This question concerns the contact between a light elastic membrane and a massive rigid object. Throughout the question, you may neglect the mass of the membrane, even when you account for the mass of the rigid object.
(a) [11 marks] A semi-infinite 2-D strip membrane is clamped at $x= \pm L$ and is subject to a (y-independent) loading, $p(x)$, in the negative z-direction. The membrane is stretched by a constant tension T in the x-direction. The shape of the membrane may be described by $z=w(x)$ for $-L \leqslant x \leqslant L$ with $w(\pm L)=0$.
(i) Show that small transverse displacements, $w(x)$, satisfy

$$
\begin{equation*}
T \frac{\mathrm{~d}^{2} w}{\mathrm{~d} x^{2}}=p \tag{2}
\end{equation*}
$$

If the membrane is brought into contact with a rigid obstacle $z=f(x)$, show that T and $\mathrm{d} w / \mathrm{d} x$ are continuous at the points where the membrane makes contact with the obstacle.
(ii) A cylindrical object of mass m per unit length, and radius R is laid to rest on the stretched membrane. Its weight per unit length, $m g$, deforms the membrane, such that the lowest point of the membrane lies a vertical distance δ below the edges of the membrane (at $x= \pm L$). You should assume that the shape of the cylinder is then approximated by $z=f(x)=-\delta+x^{2} /(2 R)$.
Determine the contact set, $[-s, s]$, as δ varies, but subject to $\delta R / L^{2} \ll 1$.
Show that the cylinder rests in equilibrium with

$$
\begin{equation*}
\delta \approx \frac{m g L}{2 T} \tag{3}
\end{equation*}
$$

(b) [8 marks] Consider now a membrane that is clamped at a circular boundary, $r=L$, with r the usual polar coordinate. (The shape of the membrane may then be written $z=w(r)$ with the clamping condition written $w(L)=0$.)
(i) Assuming that the tension T within the membrane remains constant, determine the generalization of (2) to the axisymmetric problem.
What are the appropriate conditions on $w(r)$ at the edge of a contact region?
(ii) A sphere of mass m and radius R is laid to rest on the stretched membrane. Its weight, $m g$, deforms the membrane, such that the lowest point of the membrane lies a vertical distance δ below the edges of the membrane (at $r=L$). You should assume that the shape of the sphere may be approximated by $z=f(r)=-\delta+r^{2} /(2 R)$.
Determine the contact set, $[0, s]$, as δ varies, and find an expression for δ as a function of the weight of the sphere.
(c) [6 marks] A simple model for a trampoline bounce makes use of the results of part (a), to determine how the lowest position of the bouncer, $\delta(t)$, evolves. Assume that the shape of the trampoline is determined instantaneously for a given $\delta(t)$; in particular, the restoring force from the trampoline on the bouncer is assumed to be a function of $\delta(t)$ only.
(i) Using results from part (a) as appropriate, write down, and solve, Newton's second law for the evolution of $\delta(t)$ from the moment of first contact (at $t=0$). (Denote the initially downward speed of the bouncer by V.)
(ii) Show that the maximum vertical stretching of the trampoline is attained at time

$$
\begin{equation*}
t_{\max }=\frac{\pi}{\omega}-\frac{1}{\omega} \tan ^{-1} \frac{V \omega}{g} \tag{4}
\end{equation*}
$$

where $\omega=(2 T / m L)^{1 / 2}$.
(iii) Determine the duration of the contact between the bouncer and the trampoline, and compare this time to the natural period of the motion, $2 \pi / \omega$, in the limits $V \omega / g \ll 1$ and $V \omega / g \gg 1$.
3. A thin elliptical Mode III crack, whose boundary $\partial \Omega$ is given by

$$
\frac{x^{2}}{c^{2} \cosh ^{2} \epsilon}+\frac{y^{2}}{c^{2} \sinh ^{2} \epsilon}=1,
$$

is subject to an antiplane strain displacement field, $\mathbf{u}=w(x, y) \mathbf{e}_{z}$.
(a) [12 marks] A shear stress $\tau_{y z}=\sigma$ is applied in the far field.
(i) Justify the conditions

$$
\frac{\partial w}{\partial n}=0 \quad \text { on } \quad \partial \Omega
$$

and $w \sim \sigma y / \mu$ as $x^{2}+y^{2} \rightarrow \infty$.
(ii) Show that the Joukowsky transformation, $x+\mathrm{i} y=z=\frac{1}{2} c\left(\zeta+\zeta^{-1}\right)$ conformally maps the region $|\zeta|>e^{\epsilon}(\epsilon>0)$ to the outside of the crack.
(iii) What is the inverse map from z to ζ ?
(iv) Introducing polar coordinates (r, θ) such that $\zeta=r e^{\mathrm{i} \theta}$, show that

$$
w=\frac{c \sigma}{2 \mu} \operatorname{Im}\left\{\zeta-\frac{e^{2 \epsilon}}{\zeta}\right\} .
$$

[You may use a heuristic justification of the appropriate boundary condition at $r=e^{\epsilon}$, based on your answer to part (i).]
(b) [9 marks] With the crack aligned as before, the boundary tension is now applied at an angle α to the horizontal, so that $\left(\tau_{x z}, \tau_{y z}\right) \sim \sigma(\cos \alpha, \sin \alpha)$ as $x^{2}+y^{2} \rightarrow \infty$.
(i) Repeat the analysis of part (a) to find the displacement in this case.
(ii) Give an expression for the displacement $w(z)$ in the limit $\epsilon \rightarrow 0$.
(iii) Does the rotation of the applied load increase or decrease the intensity of the singularity that is observed at the crack tips?
[You may find it helpful to note that $\zeta^{-1}=2 z / c-\zeta$.]
(c) [4 marks] Return to the case $\alpha=\pi / 2$, and consider $0<\epsilon \ll 1$.
(i) Show that the radius of curvature of the crack tip, $r_{0} \sim \epsilon^{2} c$ for $\epsilon \ll 1$.
(ii) Show that as the crack tip is approached from within the material, e.g. as $z \searrow c$, the stress $\tau_{y z} \sim \sigma\left(c / r_{0}\right)^{1 / 2}$.
[You may find it useful to note that if a displacement field can be written as $w=$ $\operatorname{Im}\{f(z)\}$, then $\tau_{y z}=\mu \operatorname{Re}\left\{f^{\prime}(z)\right\}$.]

CS. 2 Moded Solutiono
a)
i) We are given the equation otemotron:

$$
\rho \frac{\partial^{2} u i}{\partial t^{2}}=\frac{\partial \tau_{i j}}{\partial x_{j}}
$$

so that:

$$
\rho \frac{\partial u_{i}}{\partial t} \frac{\partial^{2} u_{i}}{\partial t^{i}}=\frac{\partial u_{i}}{\partial t} \frac{\partial u_{i j}}{\partial x_{j}}
$$

and so: $\quad \frac{d}{d t} \int_{V} \frac{1}{2} \rho\left|\frac{\partial u}{\partial t}\right|^{2} d V=\int_{V} \frac{\partial}{\partial x_{j}}\left(\tau_{i j} \frac{\partial a_{i}}{\partial t}\right) d V$

$$
-\int_{V} \tau_{i j} \frac{\partial}{\partial t}\left(\frac{\partial u_{i}}{\partial x_{j}}\right) d V
$$

Using symmettos of $\tau_{i j}$, we have:

$$
\tau_{i j} \frac{\partial}{\partial t}\left(\frac{\partial u_{i}}{\partial x_{j}}\right)=\quad \tau_{i j} \frac{\partial}{\partial t} e_{i j}=\frac{\partial W}{\partial t}
$$

where W is such theat: $\tau_{i j}=\frac{\partial W}{\partial e_{i j}}$.
Hence:
(*)

$$
\begin{aligned}
\frac{d}{d t} \int_{V} \frac{1}{L} \rho\left|\frac{\partial u}{\partial t}\right|^{2} \int_{P}+W d V & =\int_{V} \frac{\partial}{\partial x_{j}}\left(\tau_{i j} \frac{\partial u_{i}}{\partial t}\right) d V \\
& =\int_{\partial V} \tau_{i j} \frac{\partial u_{i} n_{j}}{\partial t} d S \\
& =-\int_{\partial V} \underline{E} \cdot \underline{n} d S
\end{aligned}
$$

wher $F_{j}=-\tau_{i j} \partial u_{i}$.
ii) F is ke evenss thus, so that ($*$) represeats consenation of eressy (nateot chasge of elastict kuetic enegy $=$ - fux Pheugh
banday).
n
$n$$|b|$
(i) Retuming to the eqnot mation, we note thet in anti-plare strain, the onts non-tere comporents of thestren tencenon:

$$
\begin{aligned}
\tau_{x z} & =M \frac{\partial w}{\partial x} \\
\text { and } \tau_{y z} & =\mu \frac{\partial w}{\partial y}
\end{aligned}
$$

Hence: $\quad \rho \frac{\partial^{2} \omega}{\partial t^{2}}=\frac{\partial}{\partial x}\left(\mu \frac{\partial \omega}{\partial x}\right)+\frac{\partial}{\partial y}\left(\mu \frac{\partial \omega}{\partial y}\right)$
or $\quad \frac{\partial^{2} \omega}{\partial t^{2}}=c^{2} \nabla_{H}^{2} \omega \quad$ with $\nabla_{H}^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$ and $c^{2}=M / g$.

ii) Bandans canditions at $y=0$ are that

$$
\begin{array}{ll}
{[w]_{-}^{r}=0} & {[\text { cts of displaanents }]} \\
\text { and }\left[\mu \frac{\partial w}{\partial y}\right]_{-}^{r}=0 & {\left[\text { cts of } \tau_{y z}\right]}
\end{array}
$$

c)
in)

$$
\begin{aligned}
& \underline{u}_{i n c}=e_{i=0} \exp \left[i u_{-}(x \sin \alpha+y \cos \alpha)-i \omega t\right] \\
& \text { (Re quit } \\
& \text { understrod S } \\
& \text { wher: } \\
& \omega^{2}=\frac{\mu_{E}}{\rho_{E}} k_{t}^{2} \\
& \Rightarrow x_{ \pm}=\omega / c_{c} .
\end{aligned}
$$

mat
 each part, ie:

$$
\begin{aligned}
& k-\sin \alpha=k_{-} \sin \beta=k_{+} \sin \gamma \\
& \therefore \quad \beta=\alpha \quad(\text { reflection is specular }) .
\end{aligned}
$$

and also:

$$
\begin{aligned}
& \frac{\omega}{C_{T}} \sin \gamma=\infty \frac{\sin \alpha}{c_{-}} \\
\Rightarrow & \sin \gamma=\frac{c_{r}}{c_{-}} \sin \alpha \quad \text { (Snell's los } \alpha \text {). }
\end{aligned}
$$

in) To determine amplitudes T and R, use cts bcs@yzo:

$$
\begin{aligned}
& {[w]_{-}=0 \Rightarrow 1+R=T} \\
& {\left[\mu \frac{\partial \omega}{\partial y}\right]_{-}^{r}=0 \Rightarrow \mu_{t} T \cdot k_{+} \cos \gamma=} \\
& u_{-}(1-R) k_{-} \cos \alpha \\
& \Rightarrow T=\frac{\mu_{-}}{\mu_{+}}(1-R) \frac{k_{-} \cos \alpha}{\mu_{+} \cos \gamma}=1+R . \\
& \Rightarrow R=\frac{\mu_{-} \cot \alpha-\mu_{+} \cot \gamma}{\mu_{-} \cot \alpha+\mu_{+} \cot \gamma}, T=\frac{2 \mu_{-} \cot \alpha}{\mu_{+} \cot \gamma+\mu_{-} \cot \alpha} .
\end{aligned}
$$

c) i) Snell's low shows that there's a problem when $\sin \gamma>1$ ie $\sin \alpha>c_{-} / c_{+}, \alpha>\sin ^{-1}\left(c_{-} / c_{+}\right)$
This is total intemal reflection.
in To make further pragren, for $\alpha>\alpha_{2}$ ilet:
(?)

$$
\gamma=\pi / 2-i \theta
$$

Then: $\cos \gamma=$ isinh $\theta, \sin \gamma=\cosh \theta$.
and Siell's Laws he cones:

$$
\cosh \theta=\frac{c_{r}}{c_{-}} \sin \alpha=\left(\frac{\mu_{r}}{\mu_{-}} \frac{\rho_{-}}{\rho_{r}}\right)^{\mu_{2}} \sin \varphi .
$$

ii) $N_{i w}, \quad F_{j}=-\tau_{i j} \frac{\partial u_{i}}{\partial t} \Rightarrow E=-\mu \frac{\partial w}{\partial y} \frac{\partial w}{\partial t} e_{y}-\mu \frac{\partial v}{\partial x} \frac{\partial w}{\partial t} e_{x}$.

Letting $T=|T| e^{i \varphi}$, we hane:

$$
\begin{aligned}
& -k_{+}+\sin h \theta \\
& \text { - } \left.\operatorname{Re}[-i \omega|T| \exp []]]_{-x}^{-i \omega t}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow\langle E\rangle=\frac{4}{2} k_{+} \omega|T|^{2} \exp \left(-2 k_{+} y \sinh \theta\right) \cos h \theta e_{x} \Rightarrow \\
& \text { Sa as } y \rightarrow+\infty,\langle E\rangle \rightarrow 0 \text { (incerenss is emitted } \\
& \text { to }+\infty \text {). } \\
& \text { iii) Erengs cuntired nithin layer of typpical thackeen: } \\
& \frac{1}{k_{+} \sinh \theta}=\frac{1}{\frac{k_{-}-\frac{c_{-}}{c_{+}} \sqrt{\frac{c_{+}^{2}}{c_{1}^{2}} \sin ^{2} \alpha-1}}{}, \frac{k_{1}}{}} \\
& =\frac{1}{u_{-} \sqrt{\sin ^{2} \alpha-\mathrm{C}^{2}-c^{2}}} .
\end{aligned}
$$

balt Q2

Balancing fores on a small segment of length $d y=d x / \cos \theta$.

$$
\left[\binom{T \cos \theta}{T \sin \theta}\right]_{x}^{x+\delta x}+\binom{0}{-p \delta x}=0
$$

For small $|\omega|, \theta \ll \mid \Rightarrow \cos \theta \approx 1$

$$
\begin{aligned}
& \sin \theta \approx d w / d x \\
& s \simeq x
\end{aligned}
$$

$$
\Rightarrow \frac{d T}{d x}=0 \quad \text { and } \quad T \frac{d^{2} w}{d x^{2}}=p
$$

Similarly, at a print where the strings makes smooth contact with the nereid object:

Fore balance gives:

$$
\begin{aligned}
& {\left[\binom{T \cos e}{T \text { sine } e}\right]_{-}^{+}=0} \\
& \Rightarrow[T]_{-}^{+}=\left[T \omega^{\prime}\right]_{-}^{+}=0 .
\end{aligned}
$$

(ii)

In contact, have $W=-\delta+x^{3} / 2 R$, out of contact ne have:

$$
\begin{array}{r}
T \frac{d^{2} w}{d x^{2}}=0 \\
\Rightarrow w=A x+B
\end{array}
$$

Consider $x>0$ (by aymetrs) $) \Rightarrow W=A(x-L) \cdot\binom{\because w(L)}{0}$
Continuity conditions
$\left.\left[w^{\prime}\right]\right]_{s^{*}}^{s+}=0 \Rightarrow s / R=A$

Then we have $(1) \Rightarrow-\delta r \delta^{2} / 2 R=\frac{S}{R}(\delta-L)$

$$
\Rightarrow-\delta=\frac{s^{2}}{2 R}-\frac{s L}{R}
$$

ar: $\quad s^{2}-2 s L+2 \delta R=0$.
Hence: $S=\frac{1}{2}\left[2 L \Theta \sqrt{4 L^{2}-85 R}\right]$
choose -re root to have \sin (os $s \rightarrow 0$ as $5 \rightarrow 0$)
For $\delta R / L^{2} \ll 1, \quad S \simeq \frac{1}{2}\left[2 L-2 L\left(X-\frac{2 \delta R}{L^{2}} \cdot \frac{1}{2}\right)\right]$

$$
=\delta R / L .
$$

To calculate the force, note that the reaction lone $N=-T \frac{d^{2} w}{d x^{2}}$
Hence $N=-T / R$ and: $F=\int_{-S}^{s}|N| d x$

$$
=2 s T / R
$$

But from the abase, $S=\delta R / L$

$$
\Rightarrow F=2 T \delta / L
$$

or $\delta=\frac{F \cdot L}{2 T}$ when $F=m g$ is the weight
b) (i) In axisymantio, consider a segment δO, between r and $r+\delta r$.

Assuming T content and considering vertical fore balance:

$$
\begin{aligned}
& T(r r \delta r) \delta \theta \cdot \sin \theta(r \delta r)-T \cdot((\delta \theta) \sin \theta(r) \\
&-p \cdot(r \delta \theta) \cdot \delta r=0 \\
& \sin \theta \simeq d \delta y / d r \quad \quad(\text { small slopes })
\end{aligned}
$$

Fine balance @ contact line $\Rightarrow\left[\frac{d v}{d r}\right]_{-}^{r}=0$.

Inst
(ii) Now, in contract we hours $W=-\dot{J}+P^{2} / 2 R$

Outer contact, $T \frac{1}{r} \frac{d}{d r}\left(r \frac{d u r}{d r}\right)=0$

resrol

$$
\begin{array}{ll}
& \Rightarrow w=A \log r / L \quad(\sin c \operatorname{win}(L)=0) \\
L \quad & {[w]_{S^{\circ}}^{s p}=0 \Rightarrow A \log s / L=-\delta+S^{2} / 2 R} \\
& {[w]_{S^{-}}^{s^{p}}=0 \Rightarrow S / R=A / s \Rightarrow A=S^{2} / R} \\
\therefore & \delta=\frac{s^{2}}{R}\left[\frac{1}{2}+\log L / S\right]=\frac{s^{2}}{R} \log \left(\frac{e^{\prime \prime L} L}{S}\right)
\end{array}
$$

As hefiexe, $N=-T \frac{1}{r} \frac{d}{d r}\left(r \frac{d w}{d r}\right)$ with $w=-\delta+r^{2} / 2 R$

$$
=-2 T / R
$$

so then force applied is $F=\int_{0}^{s} 2 \pi r .|N| d r$

$$
=2 \pi \delta^{2} / R
$$

$$
\Rightarrow \quad S=\left(\frac{F R}{2 \pi T}\right)^{M_{L}}
$$

and hence $\delta=\frac{F R}{2 \pi T \cdot R} \log \frac{e^{1 L_{2} L}}{\left(F R h_{\pi T}\right)^{1 / 2}}$

$$
\therefore \delta=\frac{F}{4 \pi T} \log \frac{2 \pi e T L^{2}}{F R}
$$

Then subsitinte Fans.
c) Neglecting weight and inertia of string, we have that

$$
\oint_{m s} F(s)
$$

$$
\begin{aligned}
m \cdot \ddot{\delta} & =m g-F \\
& =m g-2 T \delta / L
\end{aligned}
$$

We have initial conditions $\delta(0)=0$

$$
\Rightarrow \ddot{\delta}=g-\omega^{2} \delta \text { when } \omega=\sqrt{\frac{2 T}{m L}} \text {. }
$$

$$
\dot{\delta}(0)=V
$$

So sdection is: $\delta=\frac{g}{\omega^{2}}(1-\cos \omega t)+\frac{V}{\omega} \sin \omega t$

$$
\dot{\delta}=\frac{\partial}{\omega} \sin \omega t_{+} V \cos \omega t
$$

δ is maximized when $\dot{\delta}=0$ ie @tstan:

$$
\begin{aligned}
& \text { tan witmax }=-\frac{V_{\omega}}{9} \\
& \text { Hence } t_{\text {max }}=\frac{\pi}{\omega}-\frac{1}{\omega} \tan ^{-1}-\frac{V_{\omega}}{9}
\end{aligned}
$$

$$
\text { and then: } \delta_{\text {max }}=\delta\left(t_{\text {mase }}\right)
$$

$$
=\frac{g}{\omega^{2}}\left[1+\frac{1}{\sqrt{1+V^{2} \omega^{2} / g}}+\frac{\omega V}{g} \cdot \frac{\omega V / g}{\left.\left(1+V^{2} \omega^{2} / g\right)^{0}\right)^{10}}\right]
$$

$$
=\frac{9}{w^{2}}\left[1+\sqrt{1+\frac{w^{2} v^{2}}{9^{2}}}\right]
$$

[Requise $\frac{S_{\text {max }} R}{L^{2}} \ll 1$, i.e. $\left.\frac{g R m K}{L^{x} \cdot 2 T \ell}\left[1+\sqrt{1+\frac{2 T V^{2}}{m S^{2} L}}\right] \ll 1\right]$ है
Find that hime in contuct is tcentret s.t. $\delta\left(t_{\text {contract }}\right)=0$

$$
\text { i.e. } \quad O=\frac{9}{\omega^{2}} \underbrace{\left(1-\cos \omega t_{c}\right)}_{2 \sin ^{2} \frac{t_{c}}{2}}+\frac{v}{\omega} \frac{\sin _{2} \omega t_{c}}{2 \sin \frac{\omega t_{2}}{2} \cos \frac{\omega t_{c}}{2}}
$$

$$
\Rightarrow \tan \frac{\omega t_{0}}{2}=-\frac{\omega V}{9}
$$

and hence $t_{\text {catact }}=\frac{2 \pi}{\omega}-\frac{2}{\omega} \tan ^{-1} \frac{\omega V}{g}$.
If $\frac{\omega V}{9} \rightarrow \infty, \quad$ tantract $\rightarrow \pi / \omega \quad$ (half a peried)
$\begin{aligned} & \text { If } \frac{\omega V}{g} \rightarrow 0, \quad \text { tculact } \rightarrow \frac{2 \pi}{\omega}-\frac{2 V}{g}=\frac{\pi \theta_{2}}{\omega}\left(2-\frac{2 \omega V}{g}\right) \\ & \text { (teads tewasds }\end{aligned}$
(tends twands a whate perind).
al Q3/
trats i) la arti place struin:

$$
\begin{aligned}
\tau_{y_{z}} & =\mu \frac{\partial w}{\partial y} \rightarrow \sigma \text { as } x^{2}+y^{2} \rightarrow \infty \\
& \Rightarrow w \sim \frac{\sigma}{\mu} y \text { as } x^{2}+y^{2} \rightarrow \infty .
\end{aligned}
$$

In artioplace shmin: $\tau=\left(\begin{array}{ccc}0 & 0 & \tau_{x_{z}} \\ 0 & 0 & \tau_{y z} \\ \tau_{x z} & \tau_{y z} & 0\end{array}\right)$

$$
\begin{aligned}
& \underline{n}=\left(n_{x,} n_{y}, 0\right)^{T} \\
& \Rightarrow \tau_{n}=\left(\tau_{x z} n_{x}+\tau_{y z} n_{y}\right) \underline{n}
\end{aligned}
$$

So on shess-bree banday: $O=M\left(n_{x} \frac{\partial w}{\partial x}+n_{y} \frac{\partial w}{\partial y}\right)$

$$
=\mu \frac{\partial w}{\partial n} .
$$

Hence $\frac{\partial w}{\partial n}=0 \quad$ on $\quad \underline{x} \in \partial \Omega$.
ii) Consider the transtumatom: $z=\frac{c}{2}\left(3+5^{-1}\right)$.

On $|s|=e^{\varepsilon}$, let $J=e^{\varepsilon+i \theta}$ so that:

$$
\left.\left.\begin{array}{rl}
z & =\frac{c}{2}\left(e^{\varepsilon+i \theta}+e^{-\varepsilon-i \theta}\right) \\
\| & =\frac{c}{y}[\cosh \varepsilon \cdot \cos \theta+i \sinh \varepsilon \sin \theta] . \\
x+i y
\end{array}\right] \begin{array}{l}
x=c \cosh \varepsilon \cdot \cos \theta \\
y
\end{array} \quad c \cdot \sinh \varepsilon \cdot \sin \theta\right] \Rightarrow\left(\frac{x}{c \cosh \varepsilon}\right)^{2}+\left(\frac{y}{c \cdot \sinh \varepsilon}\right)^{2}=1 .
$$

1 This is the ellipise.
Check confunalits: $\frac{d z}{d \zeta}=\frac{c}{2}\left(1-5^{-2}\right) \leadsto$ ouls not at $5=0, \pm 1$ (inside $|3|=e^{\varepsilon}$.)
Check oukside ofellips \rightarrow outside ofcirch:

$$
\text { as } 5 \rightarrow \infty, z \sim \frac{c}{2} 5 \rightarrow \infty .
$$

An (i inverse mapping: $S=\frac{z}{c}+\sqrt{\frac{z^{2}}{c^{2}}-1}$
(so that outside \rightarrow outside again).
iv) $\quad \omega \sim \frac{c y}{\mu}$ as $|z| \rightarrow \infty, \quad z \sim c \zeta / 2 \Rightarrow y \sim \frac{c}{2} r \sin \theta$.
$\Rightarrow \omega \sim \frac{\sigma}{2 \mu} \cdot r \sin \theta$ as $r \rightarrow \infty$.
Want to soche $\nabla^{2} w=0$
with $w \sim \frac{\sigma c}{2 M} r \sin \theta$ as $r \rightarrow \infty$

$$
\begin{aligned}
\text { and } \quad \frac{\partial w}{\partial r} & =0 \\
\text { on } r=e^{\varepsilon} . & \left(\frac{\partial w}{\partial n}=0\right) .
\end{aligned}
$$

Let $w=f \cdot \sin \theta$

$$
\Rightarrow \quad f^{\prime \prime}+\frac{f^{\prime}}{r}-f / r^{2}=0 \Rightarrow f=\frac{5 c}{2 \mu} r+A / r
$$

But $f^{\prime}\left(e^{\varepsilon}\right)=0 \Rightarrow f=\frac{5 c}{2 \mu}\left(r+\frac{e^{2 \varepsilon}}{r}\right)$.

$$
\begin{aligned}
\Rightarrow w & =\frac{\sigma c}{2 M}\left(r \sin \theta+\frac{e^{2 \varepsilon}}{r} \sin \theta\right) \\
& =\frac{\sigma c}{2 M} \ln \left[5-\frac{e^{2 \varepsilon}}{5}\right]
\end{aligned}
$$

b) Now want

$$
\begin{aligned}
& \mu \frac{\partial \omega}{\partial x} \sim \sigma \cdot \cos \alpha \\
& \mu \frac{\partial w}{\partial y} \sim \sigma \sin \alpha \\
& \Rightarrow \omega \sim \frac{\sigma}{\mu} \cos \alpha \cdot x+\frac{\sigma}{\mu} \sin \alpha \cdot y
\end{aligned}
$$

$$
\Rightarrow \omega \sim \frac{E C}{2 \mu}\binom{r \sin \theta \cdot \sin \alpha}{r r \cos \theta \cdot \cos \alpha}
$$

as $r \rightarrow \infty$
$\operatorname{again} \frac{\partial w}{\partial r}=0$ on $r=e^{\varepsilon}$.
Let $w=f(r) \cos \theta+g(r) \sin \theta$.
then $f=f_{+} r+f_{-} / r=\frac{\sigma c}{2 \mu} \sin \alpha\left(r+e^{2 \varepsilon} / r\right)$

$$
\begin{aligned}
& g=g_{t} r+g-/ r=\frac{5 c}{2 \mu} \cos \alpha\left(r+e^{2 \varepsilon} / r\right) . \\
& \therefore W=\frac{\sigma c}{2 M}\left[\sin \alpha\left(r \sin \theta+\frac{e^{2 \varepsilon} \sin \theta}{r}\right)\right. \\
& \left.+\cos \alpha\left(r \cos \theta+\frac{e^{2 \ell} \cos \theta}{r}\right)\right] \\
& =\frac{\sigma c}{2 \mu}\left[\sin \alpha \operatorname{lm}\left[5-e^{2 \varepsilon} / S\right]\right. \\
& \left.+\cos \alpha \beta\left[S+\frac{e^{2_{\varepsilon}}}{S}\right]\right] \\
& =\frac{6 c}{2 \mu}\left\{\sin \alpha \operatorname{lm}\left[\frac{z}{c}+\sqrt{\frac{z}{c^{2}}-1}-e^{2 \varepsilon}\left(\frac{z}{c}-\sqrt{\frac{2 \pi}{c^{2}}-1}\right)\right]\right. \\
& +\cos \alpha R_{e}\left[\frac{z}{c}+\sqrt{\frac{z^{2}}{c^{2}}-1}+e^{2 \varepsilon}\left(\frac{z}{c}-\sqrt{\frac{z^{2}}{c^{2}}-1}\right)\right]
\end{aligned}
$$

ir
\Rightarrow applying at angle reduces intennts of singulants at $z= \pm c$.
c). $\alpha=\pi / 2, \varepsilon \ll 1$.

$$
w=\frac{c}{M} \ln \sqrt{\frac{z^{2}}{c^{2}}-1}
$$

$$
\begin{aligned}
& \frac{x^{2}}{c^{2} \cosh ^{2} \varepsilon}+\frac{y^{2}}{c^{2} \sinh ^{2} \varepsilon}=1 . \\
& \Rightarrow x=c \cosh \varepsilon \sqrt{1-\frac{y^{2}}{c^{2} \sinh ^{2} \varepsilon}}
\end{aligned}
$$

$$
\begin{aligned}
& 0=\frac{x \cdot x_{y}}{c^{2} \cosh ^{2} \varepsilon}+\frac{y}{c^{2} \sinh ^{2} \varepsilon} \\
& \int \Rightarrow x_{y} \simeq-\frac{y \cosh ^{2} \varepsilon}{ \pm \operatorname{coshh} \varepsilon} . \\
& x_{y}^{2}+x \cdot x_{y y}=-\operatorname{coth}^{2} \varepsilon .
\end{aligned}
$$

So dose to the tip, $x_{y}=0 \quad(\because y \approx 0)$ $x \mid \simeq c$

$$
\frac{1}{r_{0}}=\left|x_{y y}\right| \simeq \frac{\operatorname{coth} \varepsilon}{c} \sim \frac{1}{\varepsilon^{2} c} .
$$

$$
\begin{aligned}
\text { If } w_{z} & \ln [f(z)] \quad \text { as } \varepsilon \rightarrow 0 . \\
\text { then: } \tau_{y z} & =\mu M_{g} \operatorname{Re}\left[f^{\prime}(z)\right] \\
& =\frac{\mu_{5}}{2 \mu} \operatorname{Re}\left[\left(1-e^{2 \varepsilon}\right)+\frac{z}{\sqrt{z^{2}-c^{2}}} \cdot\left(1+e^{2 \varepsilon}\right)\right]
\end{aligned}
$$

At crach rip $z \geqslant c \cosh \varepsilon$

$$
\begin{aligned}
\Rightarrow \quad \tau_{y t} & =\frac{\sigma}{2} \operatorname{Re}\left[\left(1-e^{2 \varepsilon}\right)+\frac{c \cdot \cosh \varepsilon}{c \sinh \varepsilon}\left(1+e^{2 \varepsilon}\right)\right] \\
& \left.\simeq \frac{\sigma}{2}\left[\frac{2}{\varepsilon}\right]=\sigma / \varepsilon \sim \sigma \sqrt{c / \Gamma_{0}} \text { adesined }\right]
\end{aligned}
$$

