SECOND PUBLIC EXAMINATION

Honour School of Mathematics Part C: Paper C5.2
Honour School of Physics Part C: Paper C5.2

ELASTICITY AND PLASTICITY

TRINITY TERM 2018
TUESDAY, 5 JUNE 2018, 2.30pm to 4.15pm

You may submit answers to as many questions as you wish but only the best two will count for the total mark. All questions are worth 25 marks.

You should ensure that you:

- start a new answer booklet for each question which you attempt.
- indicate on the front page of the answer booklet which question you have attempted in that booklet.
- cross out all rough working and any working you do not want to be marked. If you have used separate answer booklets for rough work please cross through the front of each such booklet and attach these answer booklets at the back of your work.
- hand in your answers in numerical order.

If you do not attempt any questions, you should still hand in an answer booklet with the front sheet completed.

Do not turn this page until you are told that you may do so

1. A thin elastic beam is clamped vertically at its lower base and is subject to the gravitational acceleration, g, in the vertical direction. The length of the beam is L, and its mass per unit length is ρ. Throughout this question, you should assume that all deformations are planar and therefore consider the angular deflection of the beam, $\phi=\phi(s)$, to be measured from the vertical, with s the arc length measured from the base of the beam. With this convention, the torque exerted by elements of the beam on each other is $M=B \mathrm{~d} \phi / \mathrm{d} s$, with B a constant.
(a) [9 marks] At its unclamped end, $s=L$, the beam is subject to a force V in the positive vertical direction; there is no horizontal force or applied torque at $s=L$.
(i) Use considerations of force and torque balance to show that the the angular deflection of the beam from the vertical, $\phi(s)$, satisfies

$$
B \frac{\mathrm{~d}^{2} \phi}{\mathrm{~d} s^{2}}=[V+\rho g(s-L)] \sin \phi .
$$

(ii) Give, with justification, appropriate boundary conditions for (\dagger).
(iii) What is the vertical force that the beam exerts on its clamp at $s=0$? Justify your answer both in terms of the derivation of (\dagger) and using physical considerations.
(b) [4 marks] Consider, first, the case of negligible beam weight, $\rho g=0$, with the beam under compression, $V=-P<0$.
Determine the values of P for which the linearization of (\dagger) has non-trivial solutions. What is the smallest such $P>0$?
(c) [6 marks] Next, consider the case of no vertical applied force, $V=0$, but including the beam's weight, $\rho g>0$.
(i) Linearise (\dagger) in this case, and render it dimensionless by letting $\xi=(\rho g / B)^{1 / 3}(s-L)$.
(ii) Determine an equation satisfied by the parameter $\Lambda=L /(B / \rho g)^{1 / 3}$ for non-trivial solutions of the linearised equation to exist. Denote the smallest solution of this equation by Λ_{c}.
[Note that the general solution of Airy's equation, $y^{\prime \prime}(x)=x y(x)$, may be written $y(x)=\alpha \mathrm{A}(x)+\beta \operatorname{Bi}(x)$, for constants α and β. You may express your answer in terms of the functions Ai, Bi, and their derivatives.]
(d) [6 marks] Finally, consider the general case, $V=-P<0$ and $\rho g>0$. Assume further that the parameter $\Lambda<\Lambda_{c}$ with Λ_{c} as defined in part (c).
(i) Determine an equation satisfied by the dimensionless buckling load $\mathcal{P}=P /\left[B^{1 / 3}(\rho g)^{2 / 3}\right]$, for a fixed value of Λ.
(ii) Based on your answer to part (b), give an approximate expression for $\mathcal{P}(\Lambda)$ as $\Lambda \rightarrow 0$.
2. The Navier equation for an elastic displacement $\mathbf{u}(\mathbf{x}, t)$ reads

$$
\rho \frac{\partial^{2} \mathbf{u}}{\partial t^{2}}=(\lambda+2 \mu) \nabla(\nabla \cdot \mathbf{u})-\mu \nabla \times(\nabla \times \mathbf{u})
$$

where $\lambda, \mu>0$ are the Lamé coefficients.
(a) [10 marks] Consider harmonic travelling wave solutions of the form

$$
\mathbf{u}(\mathbf{x}, t)=\operatorname{Re}\{\mathbf{a} \exp [\mathrm{i}(\mathbf{k} \cdot \mathbf{x}-\omega t)]\} .
$$

(i) Show that given a vector a and a non-zero vector \mathbf{k}, there exists a unique scalar A and vector \mathbf{B} such that $\mathbf{a}=A \mathbf{k}+\mathbf{B} \times \mathbf{k}$ with $\mathbf{B} \cdot \mathbf{k}=0$.
(ii) Deduce that either:

$$
\mathbf{B}=0 \text { and } \omega^{2}=c_{p}^{2}|\mathbf{k}|^{2},
$$

or:

$$
A=0 \text { and } \omega^{2}=c_{s}^{2}|\mathbf{k}|^{2},
$$

where c_{p} and c_{s} are wave-speeds that you should give in terms of λ, μ and ρ.
(b) [9 marks] An elastic material occupies the half-space $x<0$ with the face $x=0$ held fixed (where $\mathbf{x}=(x, y, z)$). A plane S-wave is incident from $x \rightarrow-\infty$ with displacement given by

$$
\mathbf{u}_{\mathrm{inc}}=\operatorname{Re}\left\{(\sin \alpha,-\cos \alpha, 0)^{T} \exp \left\{\mathrm{i}\left[k_{s}(x \cos \alpha+y \sin \alpha)-\omega t\right]\right\}\right\},
$$

where $k_{s}=\omega / c_{s}$.
(i) Show that the boundary condition at $x=0$ may be satisfied by a reflected wave field that includes an S-wave and a P-wave with angles of reflection β and γ, respectively, where β should be determined and

$$
\sin \gamma=\frac{c_{p}}{c_{s}} \sin \alpha
$$

(ii) Determine the amplitudes of the reflected waves.
(c) [6 marks] Consider the problem of part (b) in the case that $\sin \alpha>c_{s} / c_{p}$.
(i) Explain physically the behaviour of the P-wave in this case, including the significance of the length ℓ that is defined by

$$
\ell^{-1}=k_{s}\left(\sin ^{2} \alpha-c_{s}^{2} / c_{p}^{2}\right)^{1 / 2} .
$$

(ii) Show that in the limit $\mu / \lambda \ll \sin ^{2} \alpha$, the amplitude of the P-wave is $O\left((\mu / \lambda)^{1 / 2}\right)$.
3. (a) [9 marks] (i) Assuming plane strain in the $x-y$ plane, calculate the shear stress on a surface with unit normal $\mathbf{n}=(\cos \theta, \sin \theta, 0)^{T}$ and show that the maximum shear stress (as θ varies) is

$$
S=\left[\tau_{x y}^{2}+\frac{\left(\tau_{x x}-\tau_{y y}\right)^{2}}{4}\right]^{1 / 2}
$$

where $\tau_{i j}$ are the components of the Cauchy stress tensor.
(ii) Show that an axisymmetric plane strain displacement, $u(r)$, must be of the form

$$
u(r)=A r+B r^{-1}
$$

for some constants A and B, and determine the corresponding stresses $\tau_{r r}$ and $\tau_{\theta \theta}$.
(b) [11 marks] An isotropic material occupies the region $r>a>0$ in plane polar coordinates (r, θ). The material is subject to a far-field compressive stress p_{∞} (i.e. $\tau_{r r}, \tau_{\theta \theta} \sim-p_{\infty}<0$ as $r \rightarrow \infty)$. Furthermore, the inner surface, at $r=a$, is traction-free.
(i) Assuming that the material is linearly elastic throughout $r>a$, find the elastic stresses in the material.
(ii) Suppose that the material satisfies the Tresca condition, i.e. that $S \leqslant \tau_{y}$ with τ_{y} the yield stress and S the maximum shear stress of part (a). Find the critical far-field pressure, p_{∞}^{c} and the radial position at which yield first occurs.
(iii) Assuming that the material is perfectly plastic, i.e. that $S=\tau_{y}$ where yield occurs, determine the size of the region in which the material yields for $p_{\infty}>p_{\infty}^{c}$.
(c) [5 marks] Consider the problem of part (b) but with a perfectly rigid material filling the domain $r<a$.
Determine the critical far-field pressure and the radial position at which yield first occurs. Compare this critical value with that found in part (b).
[In this question, you may use, without proof, the steady momentum equation together with the constitutive relations for purely radial displacement $u(r)$ of a linearly elastic solid, namely

$$
\frac{\mathrm{d} \tau_{r r}}{\mathrm{~d} r}+\frac{\tau_{r r}-\tau_{\theta \theta}}{r}=0, \quad \tau_{r r}=(\lambda+2 \mu) \frac{\mathrm{d} u}{\mathrm{~d} r}+\lambda \frac{u}{r}, \quad \tau_{\theta \theta}=\lambda \frac{\mathrm{d} u}{\mathrm{~d} r}+(\lambda+2 \mu) \frac{u}{r}
$$

where (r, θ) are plane polar coordinates and λ, μ are the Lamé coefficients.]
a) i) Consider fore balance on an infinitesimal element.

$T(s)$

$$
N(s)
$$

Vertical fore balance: $\quad \frac{d}{d s}(T \cos \varphi+N \sin \phi)-j y=0$
Horizontal fuse balana: $\frac{d}{d s}(T \sin \varphi-N \cos \varphi)=0$

$$
\therefore T \cos \varphi+N \sin \varphi=V+\rho g(2-L)
$$

$$
\text { and } T \sin \varphi-N \cos \varphi=H=O \text { (no horizontal } \quad \text { Chreapplind }=L\}
$$ Grace applied).

Eliminations T_{1} me have:

$$
\begin{equation*}
N=[V+\rho \rho(s-L)] \sin \phi \tag{*}
\end{equation*}
$$

Now consider the torque balance on the element:

$$
\begin{aligned}
& N . \delta s-M\left(s-\sigma_{s}\right)+M(s)=0 \\
& \Rightarrow M=\frac{d M}{d s_{1}} .
\end{aligned}
$$

In question, given constitutive relationship

$$
M=\beta \frac{d \phi}{d s}
$$

$\int \frac{d \varphi}{d s}>0$ conespends to regaling cunanture so this cont. rel. has eppositesing to that in lectors.

Substituting into (*) we have:

$$
B \frac{d^{2} \phi}{d s^{2}}=[v+\rho g(s-L)] \sin \phi \cdot 1
$$

i) At the base of the stat, $s=0$, damped to vertical

$$
\Rightarrow \quad \phi(0)=0
$$

At the top of th a stat, $s=L$, no torque applied

$$
\Rightarrow \phi^{\prime}(L)=0
$$

iii)

Vertical fore on has is $V-g g L$, that on top is V. difference is 59L, which is the neigh tot the ham itself.
b) In compression, we hare: $g=0, V=-P$.

Then:

$$
B \frac{d^{2} \varphi}{d s^{2}}=-P \sin \varphi
$$

with $\varphi(0)=0, \varphi^{\prime}(L)=0$
Lireariting, we have:

$$
\begin{gathered}
B \varphi^{\prime \prime}=-P \varphi \\
\text { with } \varphi(0)=\varphi^{\prime}(L)=0
\end{gathered}
$$

Nontrivial solution is:

$$
\begin{gathered}
\varphi=A \sin \left[\left(\frac{P}{B}\right)^{112} s\right] \\
\stackrel{\text { if }}{=} \cos \left[(P / B)^{\prime \prime L} L\right]=0 \\
\Rightarrow P=\pi^{2}(n+L L)^{2} B / L^{2}
\end{gathered}
$$

$\binom{$ satishises }{$\varphi(0)=0}$
Lowest value is $P_{C}=\frac{\pi^{2} B}{4 L^{2}}!V \quad \xi$

Past
c) when $V=0$, and s 10 , whee have:

$$
B \frac{d^{2} d}{d s^{2}}=\rho g(s-L) \sin \varphi
$$

Letting: $\xi=\left(\frac{j y}{B}\right)^{1 / s}(s-L)$, we have (after lineation):

$$
\begin{equation*}
\frac{d^{2} \phi}{d \xi^{2}} \simeq \xi \varphi \tag{t}
\end{equation*}
$$

with $\varphi\left(-L(95 / B)^{1 / 5}\right)=0$

$$
\phi^{\prime}(0)=0
$$

ii) Letting $A=L(\rho 9 / B)^{11 / 3}$, first $B C$ is: $\varphi(-\Lambda)=0$.
(t) is Aping's eqn, so solution is:

$$
\varphi=\alpha A_{i}(\xi)+\beta B_{i}(\xi)
$$

with α, β such that :

$$
\begin{aligned}
0 & =\alpha A_{i}(-\Lambda)+B B_{i}(-\Lambda) \\
0 & =\alpha A_{i}^{\prime}(0)+\beta B_{i}^{\prime}(0) \\
\operatorname{det}(M)=0 & \Rightarrow A_{i}(-\Lambda) B_{i}^{\prime}(0)-B_{i}(-\Lambda) A_{i}^{\prime}(0)=0
\end{aligned}
$$

d) i) When $V_{v=0}, p_{i}$, we have:

$$
B \frac{d^{2} d}{d s^{2}} \approx \rho \rho[s-L-P / \rho \rho] \rho
$$

Letting: $\bar{S}=(s 5 / B)^{113}(s-L-P / g S)$
we have: $\frac{d^{2} \varphi}{d s^{2}}=3 \varphi$ with $\varphi[-\Lambda-P]=0$ and $\varphi^{\prime}(-p)=0$
where:

$$
\phi(-r)=0
$$

$$
\Lambda=\left(\frac{\beta S}{B}\right)^{11 /} L \text { and } P=\left.P\right|_{B^{113}(S S)^{4 / 3}}
$$

Drait
Males Folloming sare argurent as befers, wehen:

$$
O=A_{i}\left(-\Lambda-P_{c}\right) B_{i}^{\prime}\left(-P_{c}\right)-B_{i}\left(-\Lambda-P_{c}\right) A_{i}^{\prime}\left(-P_{c}\right)!
$$

$$
\text { With } P_{c}=P_{c}(\Lambda)
$$

ii) As $\Lambda \rightarrow 0$, expect role of gravits to be less imputant.
\therefore expect critical (dimenricial) compression forre

$$
\begin{aligned}
& P_{c} \rightarrow \frac{\pi^{2}}{4} B / L^{2} \\
\Rightarrow & P_{c} \cdot B^{1 / 3}(j s)^{2 / 3} \rightarrow \frac{\pi^{2}}{4} \cdot \frac{B}{\Lambda^{2} B^{2 / 3}}(j s)^{2 / 3} \\
\therefore & P_{c} \sim \pi^{2} / 4 \Lambda^{2} \cdot
\end{aligned}
$$

a) We have the Navies equation:

$$
\rho \frac{\partial^{2} y}{\partial t^{2}}=\left(\lambda_{+} 2 \mu\right) \nabla(\nabla \cdot \underline{u})-\mu \nabla_{a}\left(\nabla_{n} u\right)
$$

and seel solutions $\underline{u}=\underline{a} \exp [i(\underline{k}, \underline{x}-\omega t)]$
i) First, consider $\underline{a}=A \underline{k}+\underline{B} a \underline{k}$

Dotting with $\underline{k}: \quad \underline{a} \cdot \underline{k}=A|\underline{k}|^{2} \Rightarrow A=\frac{\underline{g} \cdot \underline{k}}{|\underline{b}|^{2}}$;
Crossing with kr:

$$
\begin{aligned}
\underline{a} \wedge \underline{k} & =-\underline{k_{n}}(\underline{B} \wedge \underline{k}) \\
& =-|\underline{k}|^{2} \underline{b}+(\underline{B} \cdot \underline{k}) \underline{k}
\end{aligned}
$$

If we specify $\underline{k} \cdot \underline{B}=0$ then $\underline{B}=-\frac{\underline{g} k}{|\underline{k}|^{2}}$ (uniquely).
ii) Substituting $\underline{u}=\underline{g} \exp [i(y \cdot x-w t)]$ into Navie'segn we have:

$$
\begin{aligned}
&-\rho \omega^{2} \underline{a}=-(\lambda+2 \mu) \underline{k}(\underline{a} \cdot \underline{k})+\mu \underline{\underline{k}} \wedge(\underline{k} \wedge \underline{a}) \\
&=-(\lambda+\mu) \underline{x}(\underline{a} \cdot \underline{k})+\mu\left[(\underline{a} \cdot \underline{k}) \underline{k}-\underline{a}|\underline{k}|^{2}\right]_{1} \\
& \Rightarrow \rho \omega^{2} \underline{a}=(\lambda+\mu) \underline{k}(\underline{a} \cdot \underline{k})+\mu \underline{a}|\underline{k}|^{2} \\
& \text { ie. } \quad\left(\rho \omega^{2}-\mu|\underline{\underline{k}}|^{2}\right) \underline{a}=(\lambda+\mu) \underline{k}(\underline{s} \cdot \underline{k})
\end{aligned}
$$

But ne also have: $\underline{a}=A \underline{\underline{x}}+\underline{B} \hat{N}$

$$
\begin{aligned}
& \Rightarrow\left(\rho \omega^{2}-\mu|\underline{k}|^{2}\right)[A \underline{k}+\underline{B} \mu \underline{k}]=(\lambda+\mu) A|\underline{k}|^{2} \underline{k} \\
& \Rightarrow\left(\rho \omega^{2}-\mu|\underline{k}|^{2}\right) \underline{B} \wedge \underline{k}+\left[g \omega^{2}-(\lambda+3 \mu)|\underline{k}|^{2}\right] A \underline{k}=0
\end{aligned}
$$

Hence we have:

$$
\left[g \omega^{2}-(\mu+\mu)|k|^{2}\right] A=0,[k]
$$

and $\left[\rho \omega^{2}-\mu|b|^{2}\right] \underline{B}=\underline{0}, \quad[n k]$

or (2) $\omega^{2}=\frac{T_{j} c_{s}^{2}}{j}|\mu|^{2}$ and $\left.A=0\right] \rightarrow$ Swame
$(\lambda, d>0$ mears conanot satistrs both dispersion relationshops at once!).
b)

Hence (settirs masnitude $=1): \underline{u}_{\text {inc }}=\binom{+\sin \alpha}{-\cos \alpha} \exp \left\{\begin{array}{c}\left\{\left[u_{y}(x \cos \alpha+\operatorname{tyn} \omega)\right.\right. \\ -\omega t]\}\end{array}\right.$

Pall
Maras i) For the reflected wan we mite:

$$
\begin{aligned}
& \underline{u}_{\text {ret }}=R_{s}\binom{\sin \beta}{\cos \beta} \exp \left\{\left[\begin{array}{l}
{\left[-f_{s}(-x \cos \beta+y \sin \beta)\right.} \\
-\omega t]\}
\end{array}\right.\right. \\
& +R_{p}\binom{-\cos \gamma}{\sin \gamma} \exp \left\{i \left[k_{p}(-x \cos \gamma+-\sin \gamma)\right.\right. \\
& -\omega t]\} \text {, }
\end{aligned}
$$

The boundary condition on $x=0$ is $\underline{y}=0$
To apply this $\forall y$, must have:

$$
k_{s} \sin \alpha=k_{s} \sin \beta=k_{p} \sin \gamma
$$

The first equality $\Rightarrow \alpha=\beta$ (S-wase , rellectim is 'specular').

Also:

$$
\begin{aligned}
& c_{s}=\frac{\omega}{k_{s}}, \quad c_{p}=\frac{\omega}{k_{p}} \\
& \Rightarrow \sin \gamma=\frac{k_{s}}{k_{p}} \sin \alpha=\frac{c_{p}}{c_{s}} \sin \alpha
\end{aligned}
$$

(This is Snell's law).
ii)
(佤) To have $\underline{y}=0$ on $x=0$, reed $\underline{u}_{\text {inc }}+\underline{u}_{\text {ref }}$ e 0 then, ie:

$$
\begin{gathered}
\binom{+\sin \alpha}{-\cos \alpha}+R_{s}\binom{\sin \alpha}{\cos \alpha}+R_{p}\binom{-\cos \gamma}{\sin \gamma}=0 \\
\Rightarrow \quad R_{S} \sin \alpha-R_{p} \cos \gamma=-\sin \alpha . \\
R_{s} \cos \alpha+R_{p} \sin \gamma=+\cos \alpha .
\end{gathered}
$$

hint

$$
\begin{aligned}
& R_{s}[\sin \alpha \sin \gamma=\cos \alpha \cos \gamma]=\cos (\alpha+\gamma) \\
& \Rightarrow R_{s}=\frac{\cos (\alpha \gamma)}{\cos (\alpha-\gamma)} . \\
& \text { and } R_{p}[\sin \gamma \sin \alpha+\cos \gamma \cos \alpha]=\sin 2 \alpha \\
& \\
& \Rightarrow R_{p}=\frac{\sin 2 \alpha}{\cos (\alpha-\gamma)}
\end{aligned}
$$

c
i) If

$$
\begin{aligned}
& \sqrt{\frac{d_{1} \mu}{\mu}} \sin \alpha>1 \text { then } \sin \gamma>1 \\
\Rightarrow & \gamma \in \mathbb{C} . \text { Let: } \gamma=\frac{\pi}{2}-i \phi
\end{aligned}
$$

then: $\quad \cos \gamma=\sinh \varphi, \sin \gamma=\cosh \varphi$,

$$
\Rightarrow \cosh \varphi=\sqrt{\frac{1}{\mu}+2} \sin \alpha
$$

The x-dependence in the reflected
P-wan is:

$$
\begin{aligned}
& \exp \left[-i k_{p} x \cdot \cos \gamma\right] \\
& \quad=\exp \left[k_{p} \cdot \sinh \varphi \cdot x\right] .
\end{aligned}
$$

so expect exponential decury in $x<0$ with e-folding length:
(P-wane trapped

$$
\begin{aligned}
l_{e}=\frac{1}{k_{p} \sinh \varphi} & =\frac{c_{p} / c_{s}}{k_{s} \sinh \varphi} \\
& =\frac{1}{k_{s}} \frac{c_{p} / c_{s}}{\sqrt{c_{p}^{2} \sin ^{2} \alpha-1}} \\
& =\frac{1}{k_{s}} \frac{1}{\sqrt{c_{s}^{2} \alpha-\left.c_{j}^{2}\right|_{c_{p}^{2}}}}
\end{aligned}
$$

ii) $上 f\left(\frac{\Delta p}{\Delta}<\sin ^{2} \alpha<1, c_{s}^{2} / c_{p}^{2} \cong \mu \lambda<\lambda<\sin ^{2} \alpha\right.$
pret
Mon os ii)
If $m / \lambda \ll \sin ^{2} \alpha<1$
Then $\cosh \phi \equiv\left(\frac{d}{\mu}\right)^{1 / L} \sin \alpha \gg 1$
Hence $\sinh \varphi \simeq \cosh \varphi \approx\left(\frac{\lambda}{\mu}\right)^{1 / 2} \sin \varphi$
Frater: $\cos \gamma \approx i\left(\frac{d}{\mu}\right)^{1 / 2} \sin \alpha$

$$
\sin \gamma \simeq\left(\frac{\lambda}{\mu}\right)^{116} \sin \alpha
$$

Hence:

$$
\begin{gathered}
R_{s} \sin \alpha-R_{p} i\left(\frac{\lambda}{\mu}\right)^{11_{2}} \sin \alpha=-\sin \alpha \\
R_{s} \cos \alpha+R_{p}\left(\frac{\lambda}{\mu}\right)^{1 / 2} \sin \alpha=\cos \alpha \\
\Rightarrow R_{p}\left[\sin ^{2} \alpha+i \cos \alpha \sin \alpha\right]\left(\frac{\lambda}{\mu}\right)^{11_{L}} \\
=\sin 2 \alpha \\
\Rightarrow R_{p}=0\left((\mu / \lambda)^{1 / L}\right) .1
\end{gathered}
$$

Draft
Mates
a)

$$
\text { i) } \quad \hat{-}^{20} n=(\cos \theta, \sin \theta, 0)^{\top}
$$

In plane strain, ne hame: $\quad \tau=\left(\begin{array}{ccc}\tau_{x x} & \tau_{x y} & 0 \\ \tau_{x y} & \tau_{b y} & 0 \\ 0 & 0 & \tau_{z t}\end{array}\right)$
So the shew steen is:

$$
\begin{aligned}
t \tau_{n} & =(-\sin \theta, \cos \theta, 0)\left(\begin{array}{c}
\tau_{x x} \cos \theta+\tau_{x y} \sin \theta \\
\tau_{x y} \cos \theta+\tau_{y y} \sin \theta \\
0
\end{array}\right) \\
& =\frac{\left(\tau_{y y}-\tau_{x x}\right)}{2} \sin 2 \theta+\tau_{x y} \cos 2 \theta
\end{aligned}
$$

To Maximise this, wite RHS as $A \sin (20+\varphi)$ with $A=\sqrt{\frac{\left(\tau_{4 y}-\tau_{x x}\right)^{2}}{4}+\tau_{x y}^{2}}$
A is deary the max, so $S=\sqrt{\cdot \tau_{x S} \text { 位 } \frac{\left(\tau_{5 y}-\tau_{x x}\right)^{2}}{4}}$,
as required.
A is dearly the max, so $S=\sqrt{\cdot \tau_{x j}+\frac{\left(\tau_{y y}-\tau_{x x}\right)^{2}}{4}}$,
as required.
So Ru sum sion is:
ii) We have $\frac{d \tau_{m}}{d r}+\frac{\tau_{r-}-\tau_{0}}{r}=0 \quad$ (*)
with $\tau_{m}=(\lambda+2 \mu) \frac{d u}{d r}+\lambda_{u} / r, \tau_{00}=\lambda \frac{d u}{d r}+(\lambda+3 u) u / r$

$$
\begin{array}{r}
(*) \Rightarrow \quad(\lambda+2 \mu) u^{\prime \prime}+\lambda \frac{u^{\prime}}{r}-\frac{\lambda u}{r^{2}}+\frac{2 \mu}{r}\left(u^{\prime}-u / r\right)=0 \\
\text { ie. } \quad u^{\prime \prime}+\frac{u^{\prime}}{r}-\frac{u}{r^{2}}=0 \Rightarrow u=A r+B / r^{\prime}
\end{array}
$$

(trying solution the ham
Also: $\tau_{n}=A[\lambda+2 \mu+\lambda] \quad B\left[\lambda=r^{k} \Rightarrow k= \pm 1\right)$.

$$
\begin{aligned}
& \tau_{m}=A[\lambda+2 \mu+\lambda] \\
& \tau_{m}=2(\lambda+\mu) A-2 \mu B / r^{2}
\end{aligned}+\frac{B=r^{k} \Rightarrow k=}{r^{2}}[\lambda-\lambda-2 \mu]
$$

and $\tau_{00}=2(\lambda+\mu) A+3 \mu B / r^{2} \cdot 1$
b)

i)

From part (a), general elasticition is:

$$
\begin{array}{ll}
\tau_{r r}=A+B / r^{2} & \tau_{\text {no }}=0 \\
\tau_{00}=A-B / r^{2} . & \text { br g assumption }
\end{array}
$$

Here $A=-p_{\infty}$ try $B C s$ at $r=\infty$.
Father, $\tau_{w r}(r=a)=0 \Rightarrow B=a^{2} p_{\infty}$.

$$
\begin{aligned}
\therefore \quad \tau_{r r} & =p_{0 s}\left(-1+a^{2} / r^{2}\right) \\
\tau_{\theta \theta} & =p_{0 s}\left(-1-a^{2} / r^{2}\right) .
\end{aligned} \begin{aligned}
& \text { white the } \\
& \text { material } \\
& \text { remains } \\
& \text { elastic. }
\end{aligned}
$$

ii)

The Tresca coalition is:

$$
2 S=\left|\tau_{r}-\tau_{\theta 0}\right| \leq 2 \tau_{y} \quad \quad\left(\because \tau_{r \theta}=0\right)
$$

Here $\tau_{r}>\tau_{\theta \theta} \Rightarrow\left|\tau_{w}-\tau_{\theta \theta}\right|=\tau_{r}-\tau_{\theta \theta}$

$$
=2 p_{\infty} a^{2} / r^{2} \cdot 1
$$

so yields when $p_{00}=\tau_{y}=\int_{\infty}^{c}$
Find that yield occurs first @ria
[Even haugh $\tau_{r}, \tau_{\theta \theta} \rightarrow-\tau_{y}$, the difterace

$$
\left|\tau_{r}-\tau_{00}\right| \rightarrow 0 \text { as } r \rightarrow \infty, s_{0}
$$

no plastic yield"].
far away.

Dat \mid iii)
Mates For $p_{\infty}>\tau_{y}$, expect yielding in acres 3.3 and elastic in $r \geqslant s$.

Hence in $r \geqslant s: \quad \tau_{r r}=-p o o+B / r$

$$
\tau_{\infty 0}=-p_{\infty}-B / r^{2}
$$

(loom elastic solution) with $\left.\left|\tau_{r r}-\tau_{\theta 0}\right|\right|_{r_{i} S}=2 B / s^{2}=2 \tau_{y}$

$$
\Rightarrow B=\tau_{y} \cdot s^{2} .
$$

$\sum_{2} \ln a<r<s$ expect $\left|\tau_{w}-\tau_{\infty \theta}\right|=2 \tau_{y}$

$$
\begin{aligned}
& \Rightarrow \quad \frac{d \tau_{r r}}{d r} \left.=\frac{\tau_{\theta \theta}-\tau_{r}}{r}=-\frac{2 \tau_{y}}{r} \right\rvert\, \\
& \quad \tau_{m}^{\prime}-\tau_{\theta \theta} \\
& \therefore \quad \tau_{w}=-2 \tau_{y} \log r / a \quad\left(\because \tau_{m}\left(r_{2 a}\right)=0\right)
\end{aligned}
$$

Using contimity of Ir @ $r=5$, we have:

$$
\begin{aligned}
& -p_{\infty}+\tau_{y}=-2 \tau_{y} \operatorname{los} s / a . \\
& \Rightarrow s=a \exp \left[\frac{p_{\infty}-\tau_{y}}{2 \tau_{y}}\right]
\end{aligned}
$$

[Cronus exponentially as pos increases beyond cortical value $\left.\beta_{\infty}=\tau_{y} \cdot\right]$.
c) Now, we se $\tau_{r r}, \tau_{\theta \theta} \rightarrow-p_{\infty}$ as $r \rightarrow \infty$ (no before)
Lat, in addition, $u(r=a)=0$
In the notation of part (a) we have:

$$
2(\lambda+\mu) A=-p_{\infty} \Rightarrow A=-\frac{p_{\infty}}{2(\lambda+\mu)}
$$

and $0=A a+B / a$

$$
\Rightarrow B=-A a^{2}=\frac{p_{\infty} a^{2}}{2(\lambda+\mu)} .
$$

Hence while

$$
\begin{aligned}
& \text { while } \\
& \text { elastic: } \tau_{r-}=-p_{\infty}-\frac{2 \mu \cdot}{2(\lambda+\mu)} p_{\infty} \frac{a^{2}}{r^{2}} \\
& \tau_{\theta \theta}=-p_{\infty}+\frac{\mu}{\lambda+M} p_{\infty} \frac{a^{2}}{r^{2}}
\end{aligned}
$$

Now: $\quad \tau_{\theta \theta}>\tau_{m} \Rightarrow\left|\tau_{m}-\tau_{\theta \theta}\right|=\tau_{\theta \theta}-\tau_{r}$

$$
=\frac{2 \mu}{\lambda+\mu} p_{\infty} a^{2} / r^{2} \cdot 1
$$

Tresca $\Rightarrow \quad \frac{2 \mu}{\lambda+\mu} \rho_{\infty} a^{2} / r^{2} \leq 2 \tau_{y}$.
Hence, yeld firstoccurs at $r=a$ with:

$$
p_{\infty}=\tau_{y} \frac{\lambda+M}{M} \geqslant \tau_{y} .(\lambda>0)
$$

Hence presence of rigid inclusion strengthens hole.

